
STMicroelectronics

Multicom

User manual

7574220 Rev G

April 2008

www.st.com

BLANK

April 2008 7574220 Rev G 1/211

User manual

Multicom

A guide to STMicroelectronics’ inter-processor communications software for multi-media
applications.

www.st.com

http://www.st.com

Contents Multicom

2/211 7574220

Contents

Preface . 8

Conventions used in this guide. 8

Documentation identification and control . 8

Acknowledgements. 8

1 Introduction . 9

1.1 Overview . 9

1.2 Targeted platforms . 10

1.3 The MME/EMBX stack . 10

1.4 The RPC/EMBX stack . 11

1.5 Using EMBX without RPC or MME . 11

Part 1 Getting started . 12

2 Getting started . 13

2.1 Setting up the distribution . 13

2.2 Building Multicom . 14

2.2.1 Building Linux kernel modules . 14

2.3 Examples . 15

2.3.1 MME example . 16

2.3.2 Running examples on Linux . 16

2.3.3 RPC example . 17

Part 2 MME user guide . 18

3 Using the MME API . 19

3.1 Overview . 19

3.1.1 Transformers and transformer instances . 19

3.1.2 Commands and events . 20

3.1.3 Callbacks . 20

3.1.4 Due time . 20

3.1.5 Transformer priorities . 21

3.1.6 Structure size . 22

Multicom Contents

7574220 3/211

3.2 Initialization . 22

3.2.1 Initializing MME . 23

3.2.2 Registering EMBX transports . 23

3.2.3 Registering transformers . 23

3.2.4 Example . 23

3.3 Managing transformer lifetimes . 24

3.3.1 Querying the capabilities of a transformer . 25

3.4 Buffer and cache management . 25

3.4.1 Allocating data buffers . 26

3.4.2 Manually managing data buffers . 27

3.4.3 Subdividing a data buffer . 27

3.4.4 Data buffers in Linux user mode . 28

3.4.5 Cache management . 28

3.5 Application and transformer specific data . 29

3.6 Issuing commands . 29

3.6.1 Aborting commands . 31

3.7 Types of commands . 32

3.7.1 Transforming data . 32

3.7.2 Providing supplementary buffers . 32

3.7.3 Altering global parameters . 32

3.8 Common types of transformer . 33

3.8.1 Frame-based operation . 33

3.8.2 Stream-based and hybrid operation . 33

3.9 Linking and loading . 34

3.9.1 OS21 . 34

3.9.2 Linux . 35

3.9.3 STLinux 2.3 and udev support . 35

4 Writing an MME transformer . 36

4.1 Overview . 36

4.2 Managing transformer lifetimes . 36

4.2.1 Instantiation . 37

4.2.2 Context data . 37

4.2.3 Termination . 38

4.3 Querying the capabilities of a transformer . 38

4.4 Processing a command . 39

Contents Multicom

4/211 7574220

4.4.1 Communicating with the application . 41

4.4.2 Deferred commands . 41

4.4.3 Streaming and hybrid transformers . 43

4.5 Aborting commands . 44

4.6 Scheduling and re-entrancy . 45

4.7 Parameter passing . 45

4.7.1 Data representation . 46

4.7.2 Mapping application data structures into MME parameters 46

4.7.3 Namespace management . 48

4.7.4 An example . 49

Part 3 RPC user guide. 51

5 Building RPC systems . 52

5.1 Overview . 52

5.1.1 Structure of a typical system . 53

5.2 Supplied tools . 54

5.3 Stripping with rpccc . 54

5.4 Stripping with the C pre-processor . 55

5.5 Avoiding stripping . 55

5.6 Generating RPC stubs . 55

5.7 Linking, loading and configuring . 56

6 Interface declarations . 57

6.1 Terminology . 57

6.2 Arena declarations . 57

6.3 Transport declarations . 57

6.4 Import declarations . 58

6.5 Header declarations . 58

7 Decorating types and functions . 60

7.1 Default behavior . 60

7.2 Direction information . 60

7.3 Strings . 61

7.4 Known length arrays . 62

Multicom Contents

7574220 5/211

7.5 Delimiter terminated arrays . 62

7.6 Opaque pointers . 63

7.7 Pointers to shared memory . 63

7.8 Type definitions . 64

7.9 Function pointers and callbacks . 64

7.10 Adding decorations post-hoc . 65

Part 4 EMBX user guide . 66

8 Using the EMBX API . 67

8.1 Overview . 67

8.1.1 The EMBX shell . 67

8.2 Initialization . 68

8.2.1 Registering transport factories . 68

8.2.2 Initializing EMBX . 69

8.3 Transports . 69

8.3.1 Querying transports . 69

8.3.2 Transport open and close . 70

8.4 Buffer management . 71

8.4.1 Buffer allocation and release . 71

8.4.2 Querying buffer size . 71

8.5 Distributed objects . 72

8.5.1 Distributed object registration . 72

8.5.2 Querying distributed object properties . 73

8.6 Ports . 73

8.6.1 Obtaining port handles . 73

8.6.2 Closing ports . 74

8.7 Send and receive . 75

8.7.1 Receiving message and object events . 75

8.7.2 Sending messages . 76

8.7.3 Sending and updating distributed objects . 76

8.7.4 Usage example: buffer pool . 77

8.8 Transport and EMBX shutdown . 78

9 Transport specifics . 79

9.1 Introduction . 79

Contents Multicom

6/211 7574220

9.2 EMBXMailbox . 79

9.2.1 EMBXMailbox as a Linux kernel module . 80

9.3 EMBXSHM . 80

9.3.1 Address modes and pointer warping . 80

9.3.2 Linking and loading . 81

9.3.3 The mailbox factory function . 82

9.4 EMBXSHMC . 85

9.4.1 The mailbox factory function . 85

Part 5 Functions, types and macros . 86

10 Function descriptions . 87

10.1 EMBX functions . 87

10.2 MME functions and macros . 141

10.3 MME constants, enums and types . 163

Appendices . 191

Appendix A Transport configurations . 192

A.1 EMBXSHM: STb7100-Mboard . 192

A.1.1 Mailbox configuration . 192

A.1.2 ST40 transport configuration . 193

A.1.3 ST231-video transport configuration. 193

A.1.4 ST231-audio transport configuration . 193

A.1.5 Booting the platform . 193

A.2 EMBXSHM: STb7109-Ref board. 193

A.3 EMBXSHM: STi7200-Mboard . 194

A.3.1 Mailbox configuration . 194

A.3.2 ST40 transport configuration . 195

A.3.3 ST231- Audio 0 transport configuration . 196

A.4 EMBXSHM: STi7111-Mboard . 196

A.4.1 Mailbox configuration . 196

A.4.2 ST40 transport configuration . 197

A.4.3 ST231-video transport configuration. 197

A.4.4 ST231-audio transport configuration . 197

Multicom Contents

7574220 7/211

Appendix B MME supplement . 198

B.1 Parameter encoding . 198

B.1.1 Samples definitions. 198

Appendix C Advanced build options . 203

C.1 Manual toolset selection . 203

C.2 Debugging assertions and logging . 203

C.3 Running the test suites . 204

C.4 Tuneable parameters. 205

Revision history . 206

Index. 208

Preface Multicom

8/8 7574220

Preface

Conventions used in this guide

General notation

The notation in this document uses the following conventions:

● sample code, keyboard input and file names,

● variables, code variables and code comments,

● equations and math,

● screens, windows, dialog boxes and tool names,

● instructions.

Documentation identification and control
This book carries a unique identifier in the form:

ADCS nnnnnnnx

Where,

nnnnnnn is the document number and x is the revision.

Whenever making comments on this document the complete identification ADCS nnnnnnnx
should be quoted.

Comments on this or other manuals in this documentation suite should be made by
contacting your local STMicroelectronics Limited Sales Office or distributor.

Acknowledgements
Linux® is a registered trademark of Linus Torvalds.

Microsoft®, Windows® and Windows NT® are registered trademarks of Microsoft
Corporation in the United States and/or other countries.

Solaris is a trademark of Sun Microsystems, Inc. in the US and other countries.

SPARC® is a registered trademark of SPARC International Inc. in the US and other
countries.

Intel® is a registered trademark of Intel Corporation or its subsidiaries in the US and other
countries.

Multicom Introduction

7574220 9/211

1 Introduction

1.1 Overview
This document is a guide to STMicroelectronics’ Multicom product. Multicom combines
three distinct inter-processor communication technologies:

● MME - Multi-Media Engine API, a communications API specifically designed to control
media transformations. MME is described in Part 2 MME user guide on page 18.

● RPC - Remote Procedure Call mechanism, a means to communicate between
processors using normal function calls. RPC is described in Part 3 RPC user guide on
page 51.

● EMBX - Extended mailbox communications system, a low-level communications API
used by both MME and RPC to communicate with other processors. EMBX can also be
used directly by applications with unusual requirements. EMBX is described in Part 4
EMBX user guide on page 66.

MME provides an API for controlling media transformers, for example, an MPEG2 decoder,
which resides on either the local processor or a remote processor.

A C function running on one processor may call a function on another processor by using
RPC. To achieve this, the function’s arguments are marshalled into a communications
buffer and transmitted to a different CPU where the arguments are demarshalled and the
remote function called. The process is repeated in reverse when the remote function
completes.

The code required to marshall and demarshall the arguments is automatically generated by
the RPC tools from the application’s C source code. The source code must be augmented
by extra information called decorations where the meaning of the code is ambiguous. The C
language together with decorations and other administrative information is called the
Interface Definition Language (IDL); see Chapter 6: Interface declarations on page 57 and
Chapter 7: Decorating types and functions on page 60.

EMBX provides a carefully designed application programmer’s interface to allow data
buffers to be transmitted to other CPUs.

EMBX is designed to give the most efficient method of data transfer. The application
programmer does not need to know exactly how the buffer will be made available to the
other CPU (especially whether it will be copied or directly addressed). This allows the
programmer to develop software that can be moved to any communication architecture
supported by EMBX without having to revisit any optimizations peculiar to that platform.

Introduction Multicom

10/211 7574220

1.2 Targeted platforms
Multicom contains operating-system-specific code to manage internal communications.
Multicom is currently supported on the operating systems listed in Table 1.

EMBX provides an abstraction of the underlying hardware; thus MME and RPC have no ties
to a specific platform since all hardware dependencies are handled by EMBX.

The most recent platforms, targeted by the EMBX implementation, and supported by
Multicom are listed in Table 2. Each of these platforms is supported with examples.

EMBX is designed to minimize the effort required to retarget other similar platforms. This
makes customizing the software for your own boards very simple, see Chapter 9: Transport
specifics on page 79 and Appendix A: Transport configurations on page 192.

1.3 The MME/EMBX stack
MME’s primary purpose is to allow application and driver software to dispatch data to
transformers for encoding, decoding or some other transformation. It can be used in both
uni-processor or multi-processor hardware designs and provides a consistent API in both
cases.

MME is well suited to hardware designs that intend the host processor to run the application
and the companion processors to be devoted purely to running media transforms.

Developers targeting MME/EMBX can ignore Part 3 RPC user guide.

Table 1. Supported operating systems

Toolset CPU Operating System

ST40 Micro Toolset ST40 OS21, Linux User Mode, Linux Kernel Mode(1)

1. EMBX is supported in Linux Kernel Mode only.

ST200 Micro Toolset ST200 series OS21

Table 2. Targeted platforms

Platform Board name CPU(s)

STb7100-Mboard mb411 STb7100

STb7109-Ref board mb442 STb7109

STi7200-Mboard board mb519 plus mb520 STi7200

STi7111-Mboard platform mb618 STi7111

Multicom Introduction

7574220 11/211

1.4 The RPC/EMBX stack
RPC is designed to facilitate software development on multi-processor embedded systems.
It is not designed for workstation-like flexibility but rather for simplicity, portability, small size
and high performance. For this reason it has a different character to more traditional RPC
systems.

The set of application programs running in each processor must be known at build time.
There is no method for a CPU to discover remote processors or remote calls at run-time.
This allows RPC marshalling and other glue code to be pre-compiled for each specific
system reducing the need for on-target processing.

It is possible to have functionality that is dynamically available by initializing and deinitializing
stubs, however, the nature of that functionality must be fixed at build time.

RPC provides a rapid and simple means to partition a system across multiple processors.
Its flexibility allows designs to be quickly altered during or after initial development.

Developers targeting RPC/EMBX can ignore Part 2 MME user guide.

1.5 Using EMBX without RPC or MME
There are multi-processor systems for which neither RPC nor MME are ideally suited,
perhaps because of existing software legacy or because the system does not fit easily into a
host/companion design. Such systems may still require inter-processor communication. In
this case it is possible to use the EMBX component to provide a well supported
communications interface without using the other components of Multicom.

Developers targeting purely EMBX can ignore Part 2 MME user guide and Part 3 RPC user
guide entirely and go directly to Part 4 EMBX user guide.

Part 1 Getting started Multicom

12/211 7574220

Part 1 Getting started

This getting started covers:

● Setting up the distribution

● Building Multicom

● Examples

Multicom Getting started

7574220 13/211

2 Getting started

2.1 Setting up the distribution
Unpack the Multicom distribution on a suitable host machine which has the appropriate
target toolsets installed. See Table 1 on page 10 for a list of applicable toolsets.

Set the environment variable RPC_ROOT to the directory containing the distribution. Add one
of the following directories, derived from RPC_ROOT, to the PATH:

● %RPC_ROOT%\bin\winnt\ia32 for Windows NT hosts

● $RPC_ROOT/bin/solaris/sparc for Solaris hosts

● $RPC_ROOT/bin/linux/ia32 for GNU/Linux hosts

The Multicom build scripts examine the current environment to detect which toolsets are
installed. In particular that means that the toolsets must be included in your PATH.

Finally all makefiles supplied with Multicom use GNU make syntax. Thus in order to rebuild
the distribution, run the test suites or build any example then a version of make compatible
with GNU make must be available.

RPC_ROOT contains a deep directory structure. The contents of these directories are
overviewed in Table 3.

Table 3. The distribution directories

Directory Contains

bin/<os>/<arch>/ Host tool executables.

configs/ Platform configuration files for ST40.

docs/ Product documentation.

examples/embx/ Some example programs demonstrating the raw use of the EMBX API.

examples/mme/ Some example programs demonstrating the fundamentals of MME.

examples/rpc/
Some example programs demonstrating the fundamentals of the RPC
system.

include/ C header files used by every processor.

lib/<os>/<arch>/
Compiled libraries or kernel modules. For example, the EMBX shell and
various EMBX transports.

src/embx/
Complete source code for the EMBX implementation together with test
suites.

src/mme/
Complete source code for the MME implementation together with test
suites.

src/mkfiles
A library of makefiles. These are used to build the distribution, test suites
and examples.

src/platform/ Source code for any platform specific libraries.

src/rpc/
Source code for all target resident RPC code together with a simple test
suite.

src/tools/ Source code for host based tools used to manage the test suites.

Getting started Multicom

14/211 7574220

2.2 Building Multicom
With the exception of the Linux kernel modules, all software is supplied pre-built for all
targeted platforms. Nevertheless all target resident code supplied with Multicom is provided
in source form to facilitate debugging and porting.

From RPC_ROOT the entire base can be built by issuing the following command:

make install

The build system automatically detects which toolsets you have installed and build the
libraries using every installed toolset.

All intermediate object files can be removed using the following command:

make clean

There is no need to remove the library files since these will be overwritten automatically
when the software is next built.

Note: Throughout the entire Multicom tree a diving make system is used. Thus the above
commands can actually be issued from within any directory in the distribution. This performs
the supplied action on the current directory and all subdirectories.

By default, Multicom builds are optimized for speed and have no debug information
available. Rebuilding Multicom provides the opportunity to include this debug information;
this is achieved by issuing the following command (on a clean tree):

make install ENABLE_DEBUG=1

2.2.1 Building Linux kernel modules

The Multicom build system is integrated with Linux’s kbuild allowing Multicom’s kernel
modules to be built in a similar way to most other Linux kernel modules. In order to compile
Linux kernel modules your Linux kernel source tree must be configured using make
menuconfig or similar.

From RPC_ROOT the kernel modules can be built by issuing the following command:

make \
 ARCH=sh CROSS_COMPILE=sh4-linux- \
 KERNELDIR=<path_to_configured_linux_kernel_sources> \
 modules

It is also possible to build Multicom's kernel modules when the Linux kernel source code and
the configured built tree are in separate directories. For example:

make \
 ARCH=sh CROSS_COMPILE=sh4-linux- \
 KERNELDIR=<path_to_original_linux_kernel_sources> \
 O=<path_to_built_linux_kernel_sources> \
 modules

Having built the modules it is possible to automatically install them onto the target file
system providing that it is also mounted on the host. For example, the following command
installs the kernel modules into the default target file system in
/opt/STM/STLinux-2.3 (assuming that the user has permission to write to
/opt/STM/STLinux-2.3/devkit/sh4/target/lib).

Multicom Getting started

7574220 15/211

make \
 ARCH=sh CROSS_COMPILE=sh4-linux- \
 KERNELDIR=<path_to_configured_linux_kernel_sources> \
 INSTALL_MOD_PATH=/opt/STM/STLinux-2.3/devkit/sh4/target \
 modules_install

2.3 Examples
This section describes the getstart examples in detail. These instructions apply to all the
examples provided because they share the same build system and are all loaded onto the
target in the same way.

The MME and RPC getstart examples are found in the directories
RPC_ROOT/examples/mme/getstart and RPC_ROOT/examples/rpc/getstart
respectively.

Three variables must be supplied on the make command line to select the target platform
and the operating systems running on it.

Note: For multi-core devices with different processor cores the PLATFORM variable selects which
processor is regarded as CPU 0. The README file in the example directory documents the
number assigned to each processor.

In addition to the make variables the target example must be used. For example, to build for
STB7109 board with ST40/OS21 and ST231/OS21 the following command must be issued:

make example PLATFORM=mb442 OS_0=os21 OS_1=os21

Like the rest of the Multicom tree you can include debug information by adding
ENABLE_DEBUG=1 to this command line.

When building an example a commentary is emitted, prefixed with +++. This describes the
purpose of each command. For example, the following commentary is emitted when
building one of the RPC examples for the STB7109 board:

+++ Compile ST40/OS21 source [application.c]. +++
+++ C pre-process the interface definition for app. +++
+++ Generate the app stubs [app.stubs.c]. +++
+++ Compile ST40/OS21 source [app.stubs.c]. +++
+++ Link ST40/OS21 application for CPU 0 [obj/os21/st40/mb442/application.out]. +++
+++ Compile ST231/OS21 source [cdplayer.c]. +++
+++ C pre-process the interface definition for cd. +++
+++ Generate the cd stubs [cd.stubs.c]. +++
+++ Compile ST231/OS21 source [cd.stubs.c]. +++
+++ Link ST231/OS21 application for CPU 1 [obj/os21/st231/mb442/cdplayer.out]. +++

Table 4. Make variables

Make variable Description

PLATFORM

The name of the platform being compiled for. The platform name is typically
the name of the board in lowercase, however, the list of valid platforms is
contained in the README file for the example harness found in the harness
directory.

OS_0
The operating system to be run on CPU 0. Valid operating systems are os21
and linux.

OS_1
The operating system to be run on CPU 1. Valid operating systems are os21
and linux.

Getting started Multicom

16/211 7574220

In this example two target executables are built,
obj/os21/st40/mb442/application.out and
obj/os21/st231/m442/cdplayer.out.

The precise file extensions and paths vary depending on the toolsets used to build the
example. Read the build commentary to determine the paths needed. The examples do not
include a mechanism to load output executables onto a target. The user must use their
appropriate loader tools and environment.

Refer to Appendix A: Transport configurations on page 192 for details of how to load code
on your particular platform.

2.3.1 MME example

The MME getstart example represents a simple frame-based ‘mixer’, which mixes two
input byte sequences to produce a single output sequence. The example executes first
using a local transformer, and then a remote transformer.

A character-based bar graph output is displayed on the host console to represent the
magnitudes of the input and output signals.

See the README and comments in the example code for further information.

2.3.2 Running examples on Linux

Note: These instructions assume you have already built and installed the Linux kernel modules as
described in Section 2.2.1: Building Linux kernel modules on page 14.

The example programs, when run under OS21, include all the EMBX transport configuration
required to run the example. Due to the way the components are separated, it is not possible
to do this for GNU/Linux.

In order to run the examples on GNU/Linux the Multicom kernel modules must be correctly
loaded before running the example. Perform the following steps.

1. Configure the modules by storing their parameters in the module loader configuration
file, /etc/modprobe.conf. The harness example includes the file
$RPC_ROOT/examples/harness/modprobe.conf. Copy this file to your target file
system and remove the comment characters from the configuration parameters for your
board.

2. Analyze the modules dependencies. This is done by executing the following command
(on the target):

root@stlinux:~# depmod -a

This is done each time the modules are rebuilt.

3. Load the modules with the following sequence of commands after each reboot:

root@stlinux:~# modprobe embxshm

root@stlinux:~# modprobe mme_host

Note: When mme_host is loaded it will attempt to rendezvous with the other processor, thus
modprobe will appear to hang if the other processor it not running.

Once the modules have been loaded the system is ready to run the example programs.

Multicom Getting started

7574220 17/211

2.3.3 RPC example

The RPC examples directory contains a number of examples that demonstrate the use of
various RPC techniques. Each example contains a file called README that describes the
purpose of the example and highlights any particular points of interest.

Part 2 MME user guide Multicom

18/211 7574220

Part 2 MME user guide

The MME user guide covers:

● Using the MME API

● Writing an MME transformer

Multicom Using the MME API

7574220 19/211

3 Using the MME API

3.1 Overview
The MME API provides a means for an application program running on the host processor
to control and manipulate a codec or similar media transformer running either on the same
processor or on a different companion processor. The aim of a companion processor is to
assist the host in transforming data in real time and it communicates with the host using the
EMBX communication interface. Both host and companion transformers may, optionally,
make use of hardware accelerators to off-load some or all of the work. The MME API
remains the same independent of the location or type of the transformer, effectively hiding
the (potentially complex) structure of the system from the application. The MME API is
intended to form part of the driver layer of typical multimedia software stacks. See Figure 1.

The MME API is delivered as two libraries. The host library contains the entire MME API and
is used by the host processor. The companion library is used by zero or more companion
processors and contains only a subset of the API. This subset contains only those functions
required to register transformers and allow them to be accessed by the host processor.

Figure 1. Typical MME software stack

3.1.1 Transformers and transformer instances

A transformer is registered, typically when the system is initialized, in an abstract form (see
Section 3.2.3: Registering transformers on page 23). When a transformer is instantiated, the
abstract transformer is combined with parametric and state information; it is then capable of
processing data. This is called a transformer instance.

Application

MME

Transformer

Video
driver

Audio
driver

EMBX

Transformer

Drivers

...

MME

EMBX

Transformer Transformer

Host processor
(Optional)

Companion processors

Inter-processor
communication

Using the MME API Multicom

20/211 7574220

Typically, transformers that rely on hardware accelerators can only have one instance at a
single point in time due to there only being one accelerator. However, for software
transformers, it is unusual for anything other than available memory to limit the number of
instances of a particular transformer.

3.1.2 Commands and events

Transformer instances are controlled by sending them commands. Each command is a self-
contained unit of work consisting of a due time, a command code, some transformer specific
parametric information and the data buffers to be transformed, by the command. All
commands of the same priority are executed in due time order.

Note: 1 The priority of a command is inherited from the transformer instance with which it is
associated. The priority of a transformer instance is supplied by the application when the
transformer is instantiated.

2 Because commands are executed on different processors and, potentially, can be deferred
for execution by different hardware accelerators, this does not imply that across the system
as a whole, all commands will be issued or complete in due time order.

Each command is associated with a status structure that, among other things, provides the
unique identifier by which the command can be managed together with an indication of the
command’s current state.

Commands are submitted for execution asynchronously, that is, the function to issue the
command completes successfully before the command has completed.

The MME can generate events when a command completes or fails. Event notification may
be optionally enabled by the application programmer when a command is submitted. Events
are delivered to the application by using callbacks.

3.1.3 Callbacks

A callback function and application-specific callback data is associated with a transformer
when a transformer is instantiated. When a command is sent to a transformer, the
application can choose whether or not it will be notified of any events associated with the
command, by the associated callback.

3.1.4 Due time

The due time is used by the MME implementation to determine in what order to process
commands. The command queue for each transformer is maintained in due time order and
when a command is dispatched all the queues are examined and the one with the lowest
due time is selected for execution.

Note: The due time is only relevant to MME_SET_GLOBAL_TRANSFORM_PARAMS and
MME_TRANSFORM; MME_SEND_BUFFERS commands are executed in strict FIFO order and
can pre-empt currently running commands. See Section 3.7: Types of commands on
page 32.

Neither the MME host nor the companion is aware of the current system time. This leaves
the choice of what time unit to use entirely at the application designers discretion. In most
cases using the host processor’s system clock is recommended. Although the MME
implementation does not know the unit of time, it does know that as time progresses the due
time will eventually reach 0xffffffff and overflow. For this reason when due times are

Multicom Using the MME API

7574220 21/211

compared it is not a simple magnitude comparison. Instead the times are arranged, such
that tafter - tbefore is less than 0x7fffffff.

Figure 2 shows what this comparison means in practice by showing how ta will be compared
against all possible 32-bit values:.

Figure 2. Time arithmetic

When due times are exactly equal then the least recently issued command will be executed
first. This permits commands to be executed in strict FIFO order if their due times are
always the same value; zero is a good candidate value in this case although any value can
be used.

There are three obvious ways an application may choose to utilize the due time:

● As constant value across all transformers. This results in FIFO scheduling within a
transformer and round robin scheduling among transformers.

● As unique constant values. This results in FIFO scheduling within a transformer and
prioritized scheduling among transformers. This differs from normal prioritized
scheduling because low priority transforms will not be pre-empted. This may yield
slightly better utilization of processor bandwidth at the expense of latency.

● As true due time. This results in due time scheduling within all commands irrespective
of which transformer queue they appear on.

3.1.5 Transformer priorities

The due time mechanism allows commands to be executed in a deterministic sequence.
However, an application may require short-duration transforms (such as a series of audio

ta

After Now

Before Now

0x8000 00000x7FFF FFFF

x ticks

0 0xFFFF FFFF

y ticks

Past

Future

Using the MME API Multicom

22/211 7574220

frame decodes) to complete while a lengthy transform operation (such as a JPEG decode)
is being handled by another transformer instance.

To facilitate this MME supports five transformer priorities. A priority is assigned to a
transformer instance when the instance is created. Transformer priorities are mapped onto
the underlying operating system thread priorities; an execution thread is created for each
priority for which a transformer is instantiated.

Therefore a transform command executing on a high priority transformer instance takes
precedence over a command executing on a lower priority transformer instance.
Commands at a particular priority are submitted sequentially to their transformer instances
in due time order.

3.1.6 Structure size

The MME API uses MME structures to pass data. Typically there is a size field
StructSize which must be set to the size of the structure in bytes, see Section 10.3: MME
constants, enums and types on page 163.

3.2 Initialization
Initialization of a system is divided into three distinct stages. These are:

1. Initializing MME (which presupposes that the EMBX is initialized, see Section 8.2 on
page 68).

2. Registering EMBX transports used to communicate with other processors.

3. Registering transformers.

Note: Steps 2. and 3. do not need to be performed in order.

It is essential that all host and companion processors in a system are initialized. However,
some stages of the initialization may be omitted for particular operating environments
supported by MME:

● For single processor (host only) systems, there is no need to register EMBX transports
because there are no other processors.

● For multi-processor OS21 systems, all steps are required for companion processors.
Registering transformers is optional for host processors.

● For Linux user space applications, EMBX transports are registered when the MME
module is loaded by module parameters. They cannot be registered from Linux user
space.

● For Linux kernel space operation, MME is initialized automatically when the MME
module is loaded. EMBX transports may optionally be registered by module
parameters when the MME module is loaded. Registering local transformers is
optional.

Section 3.9.2: Linux on page 35 contains further details about loading Linux kernel
modules.

Note: It is not possible to have a companion implemented under Linux.

Multicom Using the MME API

7574220 23/211

3.2.1 Initializing MME

The MME library is initialized using the following function:

MME_ERROR MME_Init(void)

The MME library must be loaded and initialized on each processor and user space process
in the system.

Note: The Linux kernel MME implementation automatically calls MME_Init during module load.

No other API can be called until the library is initialized.

In a system where multiple threads use MME, it is permissible for each thread to call
MME_Init. The first call performs initialization, returning MME_SUCCESS if no error occurs.
Any subsequent calls simply return MME_ALREADY_INITIALIZED. That is, a second call to
MME_Init does not re-initialize MME.

Note: Calls to MME_Init are not counted. Thus particular care must be taken de-initializing MME
when sharing the MME between multiple threads.

3.2.2 Registering EMBX transports

EMBX transports can be registered, as soon as both EMBX and MME have been initialized.
A transport is registered using the following function:

MME_ERROR MME_RegisterTransport(const char *transport_name)

When a transport is registered, MME immediately attempts to open the transport and
establish communication. This function blocks only if the underlying transport is not ready to
be opened and remains waiting for other processors to participate.

3.2.3 Registering transformers

A transformer is registered with a name and associated function pointers by using the
following function:

MME_ERROR MME_RegisterTransformer(
const char *name,
MME_AbortCommand_t abortFunc,
MME_GetTransformerCapability_t getTransformerCapabilityFunc,
MME_InitTransformer_t initTransformerFunc,
MME_ProcessCommand_t processCommandFunc,
MME_TermTransformer_t termTransformerFunc)

Each of the functions pointed to is described in detail in Chapter 4: Writing an MME
transformer.

3.2.4 Example

This section provides examples of how MME is started on a host CPU and on a companion
CPU. The examples illustrate the startup sequence for the host application and for the
companion. It is assumed that the operating system has been started on each CPU.

Note: For brevity, return code checks have been omitted from the examples.

Using the MME API Multicom

24/211 7574220

Host-side example

/* Do the CPU-specific EMBX init here - EMBX transports registered */
/* This is application-supplied on each CPU */

/* Intitialize the MME system for a host */
res = MME_Init();

/* For each EMBX transport */
res = MME_RegisterTransport(transport);

/* Init transformer */
res = MME_InitTransformer("com.st.mcdt.mme.test_transformer",

&initParams, &transformerHandle);

/* Send a transform command */
res = MME_SendCommand(transformerHandle, MME_TRANSFORM, ...);
res = MME_TermTransformer(transformerHandle);
res = MME_DeregisterTransport();
res = MME_Term();

Companion-side example

/* Do the CPU-specific EMBX init here - EMBX transports registered */
/* This is application-supplied on each CPU */

/* Intitialize the MME system for a companion */
res = MME_Init();

/* For each EMBX transport */
res = MME_RegisterTransport(transport);

/* Register the transformers active on this CPU */
res = MME_RegisterTransformer("com.st.mcdt.mme.test_transformer",

abortFunc, getCapabilityFunc,
initFunc, processCommandFunc, termFunc);

/* This call returns when the host side calls MME_Term() */
res = MME_Run();

/* The following are needed in case MME_Run() terminates abnormally */
res = MME_DeregisterTransport(transport);
MME_Term();

3.3 Managing transformer lifetimes
Transformer instances can be created and destroyed using the following functions:

MME_ERROR MME_InitTransformer(
const char *name,
MME_TransformerInitParams_t *params_p,
MME_TransformerHandle_t *handle_p)

MME_ERROR MME_TermTransformer(MME_TransformerHandle_t handle_p)

The name argument specifies the name of the previously registered transformer.

params_p is used to specify one of five priority levels for the transformer together with
details of the callback function used to communicate any events associated with this
transformer and its commands. Additionally the parameter structure may contain a pointer
to transformer specific parameters containing any initial state the transformer may require.
See Section 3.5: Application and transformer specific data on page 29 and Section 4.7:
Parameter passing on page 45.

Multicom Using the MME API

7574220 25/211

If MME_InitTransformer returns successfully then handle_p is supplied with a handle
used to issue commands and terminate the transformer. Once initialized, a transformer can
execute an arbitrary number of commands before finally being terminated.

MME_TermTransformer is used to destroy a transformer instance thus freeing any
resources used by the transformer.

Note: It is not possible to terminate a transformer if there are any outstanding commands pending.
If this is attempted an error is returned.

3.3.1 Querying the capabilities of a transformer

It is sometimes useful to examine the capabilities of a transformer before it is instantiated,
either for error checking or to ensure the correct transformer is being used. MME allows
transformers to publish their capabilities without requiring a handle. This enables
transformers to be examined before any calls to MME_InitTransformer.

The following function is used for this purpose:

MME_ERROR MME_GetTransformerCapability(
const char *transformerName,
MME_TransformerCapability_t *transformerCapability)

The transformer is able to describe its preferred input and output formats together with its
version number. Transformer specific details can also be copied into a user-supplied buffer.

3.4 Buffer and cache management
Data buffers are used throughout MME to transport unstructured data between the
application and transformers. In this case, unstructured is used to mean that data has
identical representation on all processors regardless of endianness or similar concerns; it is
a simple stream of bytes. A data buffer describes a logical group of memory locations that
contain or are intended to contain media data. A data buffer is represented by the struct
MME_DataBuffer_t.

Each data buffer is composed of one or more scatter pages. A scatter page describes a
single sequential group of memory locations, or more specifically, a base pointer and a size.
A data buffer comprised of a single scatter page is a linear buffer while a data buffer
consisting of multiple scatter pages is a scattered buffer.

A scatter page is represented by the structure MME_ScatterPage_t.

Using the MME API Multicom

26/211 7574220

Figure 3. A scattered data buffer

Note: Although both linear and scattered buffers are properly handled by the MME API, some
transformers are not able to efficiently support scattered buffers. For example, using
scattered buffers makes it difficult to delegate work to accelerators that only support linear
DMA.

3.4.1 Allocating data buffers

Data buffers can be allocated and freed using the following functions:

MME_ERROR MME_AllocDataBuffer(
MME_TransformerHandle_t Handle,
MME_UINT Size,
MME_AllocationFlags_t Flags,
MME_DataBuffer_t **DataBuffer_pp)

MME_ERROR MME_FreeDataBuffer(MME_DataBuffer_t *DataBuffer_p)

A data buffer is allocated with an affinity to a particular transformer handle. This means that
the memory returned will be allocated such that it is suited for optimal communication with a
particular transformer instance. The data buffer can be used successfully with any other
transformer instance though not always optimally. For example, a buffer allocated for a local
transformer may not be able to make use of a zero copy acceleration when used with a
remote transformer.

Note: When a chain of transformers is used, the cost of converting to an optimal buffer between
links in the chain is likely to be larger than the cost of using a non-optimal buffer.
Applications should therefore reuse buffers between links when this is possible. In most
cases allocating a buffer with an affinity to the most compute intensive link in the chain, will
yield optimal results.

It is possible to override pure affinity based allocations if the application requires specific
properties of memory once outside the scope of MME. For example, if the transformed data
is presented to a linear DMA engine it may be necessary to force allocation from a single
scatter page. Similarly pre-scanning of a buffer by the host may require the data to be held
in uncached memory so the host does not have to flush and invalidate its data cache prior to
calling MME.

Half-filled
12288 byte
data buffer

Completely-filled
4096 byte
scatter page

Half-filled
4096 byte
scatter page

Empty
4096 byte
scatter page

Multicom Using the MME API

7574220 27/211

It may be useful in some situations to sub-divide memory allocated by MME into user-
specified scatter pages. An example of this would be to use multiple scatter pages to divide
a multiplexed audio and video stream without copying the original data. It is therefore quite
legitimate to reuse the underlying memory locations outside of the original data buffer. It is
not, however, possible to deallocate these data buffers individually. Only data buffers
allocated by MME can be freed by MME. For this reason, the original data buffer must be
retained in order to successfully free the buffer.

3.4.2 Manually managing data buffers

MME permits any memory locations accessible by the host to be used in data buffers and
scatter pages.

Note: Linux User Mode applications are the exception to this, see Section 3.4.4.

This allows most applications to manage memory for themselves and construct data buffers
and scatter pages as required.

This is a perfectly acceptable approach to application design but it is important that the
application designer appreciate the care that may be required in order to achieve optimum
efficiency.

In order to transfer data buffers, MME registers each scatter page as an EMBX distributed
object(a), allowing the underlying EMBX transport to copy each page in the most efficient
manner. If the page cannot easily be addressed (in a cache coherent manner) by a
companion CPU, EMBX has to copy the data which is potentially time consuming. If the
memory is cached it is also possible that EMBX has to make pessimistic assumptions
regarding whether it is held in the CPU’s cache.

Note: Cached buffers that are not aligned to the largest cache line size in the system pose
significant problems because this makes writes by the companion CPU to those addresses
unsafe, forcing at least a partial copy.

3.4.3 Subdividing a data buffer

The application may divide the scatter pages returned by MME_AllocDataBuffer() into
application-oriented scatter pages, so long as the divided pages reside entirely within the
allocated pages.

An application must not make assumptions about the number of scatter pages returned by
MME_AllocDataBuffer unless the flag MME_ALLOCATION_PHYSICAL is specified, in
which case a single page is returned.

A simplified example of dividing a physical scatter page is shown below. This example takes
the scatter page returned by MME_AllocDataBuffer and divides it into
NUM_SCATTER_PAGES scatter pages:

MME_DataBuffer_t* dataBuffer;
MME_ScatterPage_t* origPage;
MME_ScatterPage_t scatterPage[NUM_SCATTER_PAGES];
int newPageSize;
unsigned char* pageBase;

a. There are, in fact, a few fast paths through MME that avoid this registration but they are not visible to the
application and therefore not mentioned, in order to simplify the explanation.

Using the MME API Multicom

28/211 7574220

/* Allocate a buffer of ’size’ bytes */
MME_AllocDataBuffer(hdl, size, MME_ALLOCATION_PHYSICAL, &dataBuffer);

/* Keep a record of the original scatter page array */
origPage = &dataBuffer->ScatterPages_p;

/* Calculate size of each new scatter page - ignore the remainder bytes */
newPageSize = origPage->Size/NUM_SCATTER_PAGES;
pageBase = origPage->Page_p;

/* Set the data buffer to use the new array of scatter pages */
dataBuffer->ScatterPages_p = scatterPage;

for (i=0; i<NUM_SCATTER_PAGES; i++) {
 dataBuffer->ScatterPages_p[i].Page_p = pageBase;
 dataBuffer->ScatterPages_p[i].Size = newPageSize;
 dataBuffer->ScatterPages_p[i].BytesUsed = newPageSize;
 pageBase += newPageSize;
 }
/* Now use the data buffer with the scatter pages */
 ...

/* Free the data buffer when no longer required */

dataBuffer->ScatterPages_p = origPage;
MME_FreeDataBuffer(dataBuffer);

3.4.4 Data buffers in Linux user mode

A Linux user application writer should endeavor to use MME_AllocDataBuffer() to
allocate a data buffer for use by MME_SendCommand(). If this is not feasible because a data
buffer has been allocated in kernel space by another agent (for example a video driver), the
corresponding user space address of this buffer may be used in the Page_p field of a
scatter page (MME_ScatterPage_t).

MME_SendCommand ensures that the physical pages that comprise the buffer:

● belong to the calling process

● are physically contiguous

If either of these criteria are not met, MME_SendCommand returns MME_INTERNAL_ERROR.

The cacheability of these contiguous pages is determined from the cacheability flag within
the Virtual Memory Area (VMA), in which the pages reside.

3.4.5 Cache management

When a data buffer is held in cached memory, EMBX is forced to make a pessimistic
assumption regarding whether it is held in a particular processor’s cache, in order to
guarantee correctness. In many cases, the application is in a position to provide hints that
can reduce this pessimistic behavior. These hints have no effect if memory is uncached, and
can therefore be applied by an application even for affinity-allocated memory (see
Section 3.4.1: Allocating data buffers on page 26).

For example, a buffer populated by an incoherent DMA peripheral (and not subsequently
read by the CPU) is known not to be in a processor’s cache. It is therefore wasteful to spend
time flushing such a buffer from memory.

Multicom Using the MME API

7574220 29/211

For this reason, each MME scatter page can be marked with the cache management hints
shown in Table 5 on page 29, prior to being made available to the host.

3.5 Application and transformer specific data
MME provides a mechanism for passing application-specific or transformer data to and from
the transformer. When such data is to be passed it is specified by an address (of type
MME_GenericParams_t) at which the data starts and a length in bytes. A mechanism for
managing the portability of such data is described in Section 4.7: Parameter passing on
page 45.

3.6 Issuing commands
Commands are issued using the following function:

MME_ERROR MME_SendCommand(
MME_TransformerHandle_t Handle,
MME_Command_t *CmdInfo_p)

MME_SendCommand is asynchronous; it returns before the command has completed
processing. For this reason it is possible to examine the state of the command before it has
completed.

Table 5. MME_ScatterPage_t FlagsIn and FlagsOut

Flag FlagsIn(1)

1. The FlagsIn field is set by the host application before the command is issued to the MME.

FlagsOut(2)

2. The FlagsOut field is set by the companion transformer before notifying the host that the transform is
complete.

Description

MME_DATA_CACHE_COHERENT ✓ ✓

For a host this means that all input
buffers are coherent with memory
and the output buffers are not
present in the cache.

For a companion this means that
no buffers are present in the
cache. This directs MME to avoid
any unnecessary cache
invalidations or cache flushes.

MME_DATA_TRANSIENT ✓

Data is reused by the companion
without being read by another
processor or hardware accelerator.
This directs MME not to flush the
companion’s data cache.

Using the MME API Multicom

30/211 7574220

The application must fill in several fields of the MME_Command_t structure:

● StructSize - see Section 3.1.6: Structure size on page 22

● CmdCode - with the command to perform - see Section 3.3: Managing transformer
lifetimes on page 24

● CmdEnd - to specify whether events such as a “command completion” cause the
callback function to be called

● Due time - see Section 3.1.4: Due time on page 20

(zero for all commands ensures FIFO processing of commands)

● NumberInputBuffers - the number of input data buffers

● NumberOutputBuffers - the number of output data buffers

● DataBuffers_p - a pointer to an array of pointers to the input buffers and output
buffers. The input buffer pointers must precede the output buffer pointers in this array

● Param_p and ParamSize - with command specific parameters. These should be set
to NULL and zero respectively if there are no parameters. See Section 3.5: Application
and transformer specific data on page 29 and Section 4.7: Parameter passing on
page 45

The state is held in the MME_CommandStatus_t structure within the MME_Command_t
structure. The command changes from state to state as shown in Figure 4 on page 30.

Figure 4. Command state diagram

MME_COMMAND_PENDING

Submit command

MME_COMMAND_EXECUTING

MME_COMMAND_COMPLETED MME_COMMAND_FAILED

Command de-queued

Command failedCommand succeeded

Command

Start state

Stop state

Deferred state

deferred

Multicom Using the MME API

7574220 31/211

When a command is issued it will be in the MME_COMMAND_PENDING state for as long as it
is enqueued, waiting for processing time to become available.

The command’s transition to the MME_COMMAND_EXECUTING state, occurs when it is
allocated processor time.

Note: When a command is scheduled for execution on a companion processor, it is not possible to
distinguish between the MME_COMMAND_PENDING and MME_COMMAND_EXECUTING states
due to the requirement of minimizing communication between the host and companion. All
commands that are scheduled on a companion processor appear to the application to be in
the MME_COMMAND_EXECUTING state.

If execution has terminated, either by normal completion of processing or due to an error,
the state changes to one of the final states: MME_COMMAND_COMPLETED, or
MME_COMMAND_FAILED. Callbacks occur whenever execution of a command completes or
blocks due to command overflow or underflow conditions, which are described in
Section 3.8.2: Stream-based and hybrid operation on page 33.

Executing commands enter the deferred state when a transformer delegates processing to
the hardware block. (The deferred state is a conceptual state which is not observable by the
host). When a command is deferred, subsequent commands are executed by the processor
while the original command is executed by an independent hardware accelerator. A deferred
command can either proceed directly to one of the final states or re-enter the
MME_COMMAND_PENDING state and wait for processor time.

Note: Applications should never repeatedly poll the state of a command as this has the potential to
deny other threads the use of the processor. Instead of polling, the application should utilize
callbacks.

3.6.1 Aborting commands

It is possible for the application to request that a command is aborted. This is achieved using
the following function:

MME_ERROR MME_AbortCommand(MME_CommandId_t CmdId)

This function is asynchronous, it returns successfully before the request for abortion has
been passed on.

An abort is, effectively, a request for a command to immediately enter the
MME_COMMAND_FAILED state. As such the application will be notified if an abort was
possible by the command entering this state. The application will receive a callback,
assuming these are requested. If the command could not be aborted it will complete as
normal entering either the MME_COMMAND_COMPLETED state or the
MME_COMMAND_FAILED state with a different error code.

Although a command in the MME_COMMAND_PENDING state can always be aborted, it is not
always possible for commands in the MME_COMMAND_EXECUTING or deferred(b) states to be
aborted, as support for abort from these states is transformer-specific.

Note: Since commands can asynchronously move from state to state, it is possible for a command
to change state between the application observing that command in the
MME_COMMAND_PENDING state and issuing the abort. As such the application should
always consult the state of the aborted command before assuming success.

b. The technicalities of aborting a deferred command is discussed in detail in Section 4.4.2: Deferred commands
on page 41.

Using the MME API Multicom

32/211 7574220

3.7 Types of commands
There are three types of command that can be issued through a call to MME_SendCommand:

● transform data

● provide additional data buffers

● alter global parameters

A command type is selected by setting the MME_CommandCode_t field in the
MME_Command_t structure.

These types are described in Section 3.7.1 through to Section 3.7.3.

3.7.1 Transforming data

Data transformations are at the heart of the MME API. All the other API calls and
transformer commands exist solely to assist with data transformations.
The command code for data transformations is MME_TRANSFORM.

Wherever possible, data transformations are supplied with both input and output buffers as
part of the transform command.

Most complex transformers also take some transformer specific command parameters.
Typically this parametric information is purely local affecting only the current transformation
although it is quite legitimate for this to affect some global state. For example, when
changing channel in a set-top box application a transformer reset might be requested.

3.7.2 Providing supplementary buffers

In some cases, it is not possible for a data transformation to be supplied with all the data
buffers required for the transformation to complete. The reasons for this are outlined in
Section 3.8.1 and Section 3.8.2. If a transformation cannot be supplied with all the data
buffers initially then it is necessary to supply supplementary buffers to the transformer. This
is achieved using one or more MME_SEND_BUFFERS commands.

MME_SEND_BUFFERS commands do not complete, that is, enter one of the final states, at
the point the buffers are supplied to the transformer. They complete only when the buffers
have been consumed by the transformer. This allows the application to know whether a
buffer contains valid or in-use data without having to identify which transform request was
responsible for filling it. Should such information be required, it is possible for transformer
specific command status structures to be filled in by the transformer.

3.7.3 Altering global parameters

Global parameters form part of each instantiated transformer and are manipulated using the
MME_SET_GLOBAL_TRANSFORM_PARAMS command code. Examples of global parameters
include the chosen output format for data, gain for each channel of a mixer or the magnitude
of reverb effects.

Global parameters can also be used to change less obvious items of global transformer
state. For example, the transformer could be directed to move any command in the deferred
state to the MME_COMMAND_FAILED state. By effectively abandoning any commands it has
deferred it will then be possible for a transformer instance to be terminated.

When altering the global parameters, no data buffers are passed into or out of the
transformer. All information required by the transformer should be passed using the

Multicom Using the MME API

7574220 33/211

transformer specific command parameters. Similarly any information returned by the
transformer should be contained in the transformer specific command status parameters.

3.8 Common types of transformer
This section distinguishes between types of transformer, based on how the input and output
buffers are managed, in order to discuss the advantages and disadvantages of each
approach.

A transformer is considered frame-based if its entire input and output buffers can be
determined at the point the transform MME_TRANSFORM command is issued. Any
transformer that does not require the use of MME_SEND_BUFFERS can therefore be
considered to be frame-based.

A transformer is considered streaming if both its input and output buffers require the use of
MME_SEND_BUFFERS.

Pure streaming transformers, while perfectly legitimate, are quite rare. Much more common
are hybrid transformers consisting of frame-based input buffers and streaming output
buffers or vice versa.

3.8.1 Frame-based operation

Frame-based operation is considered to be the default within MME. Although other modes
of operation are possible, if ever there is a choice between frame-based or streaming
operation then the frame-based approach is recommended.

By adopting frame-based operation, the amount of interrupt activity on both CPUs can be
minimized. Particularly for media processors this maximizes processing bandwidth.
Because all buffers are available before the transformation begins, there is no risk of the
transformer blocking, which has the potential to seriously degrade performance.

Frame-based operation is a particularly good approach for decoding multiplexed audio/video
streams common in embedded multimedia processing. For both audio and video decode,
the size of the output frame or picture is known in advance of processing. It is also fairly
easy to identify complete input frames, because the device performing the demultiplex can
readily identify end-of-frame markers.

If a frame-based transformer is not supplied with sufficient buffers, it does not block, instead
it moves to the MME_COMMAND_FAILED state and sets the appropriate error code in the
command status structure.

When a frame-based transformer completes, it issues a MME_COMMAND_COMPLETED_EVT
event and the application receives a callback.

3.8.2 Stream-based and hybrid operation

Unfortunately there are number of reasons why it may not be possible for a transformer to
be wholly frame-based:

● transformations create an unknown quantity of output

● transformations consume an unknown quantity of input

● transformations are required to start before all available buffers are ready

The first situation is common in variable or average rate encoders. From a given input it is
computationally unfeasible to estimate how much output will be created.

Using the MME API Multicom

34/211 7574220

The second situation occurs when a stream format makes it difficult to identify end-of-frame
markers or simply when a stream is not divided into frames.

The final situation is comparatively rare. One example is that of decoding a large JPEG
image stored on ‘slow’ media, such as disk. It is desirable that the time between opening
and displaying the image is minimized by starting to decode data as it becomes available.
As such, once the first part of the JPEG is available, it is useful to initiate the transform,
knowing that the remaining part of the image will be provided by the application when (or
before) the input buffer underflows.

Unlike frame-based transformers, stream-based transformers (or the stream-based side of a
hybrid transformer) will not return an error during data underflow or overflow. Instead a
MME_DATA_UNDERFLOW_EVT or MME_NOT_ENOUGH_MEMORY_EVT event is issued and the
command suspends its execution waiting for further data.

Note: Both underflow and overflow are exceptional events and should not occur during normal
operation of a streaming transformer. They exist only to allow these circumstances to be
handled gracefully. When underflow or overflow occurs, all processing at the same priority is
halted on that processor. This has the potential to waste significant processor bandwidth,
particularly in single-purpose companion processors. Other transformer priorities are not
effected. See Section 4.4.3: Streaming and hybrid transformers on page 43.

In order to prevent these problems, the application should normally buffer sufficient input
data or output space for this situation to be avoided. Where buffering exposes latency
problems when changing streams (for example, in trick modes or during channel change)
then MME_AbortCommand provides a means to mitigate this.

When a data buffer has been consumed or filled completely, the MME_SEND_BUFFER
command completes.

If an input data buffer is only partially consumed, the command will not complete; instead it
remains pending until the next MME_TRANSFORM command consumes it.

Whether a partially filled output data buffer completes, before it is full, is transformer-
dependant. If the output consists of variable length frames, it is normal to complete a
partially-filled frame and move on to the next one. Where the output does not contain frame
markers, the buffer will not complete until it is completely filled.

3.9 Linking and loading
This section describes linking and loading issues for different operating systems.

3.9.1 OS21

On OS21 the application must link against the EMBX shell and any applicable transport
libraries. Additionally it must link against either the MME host library or the MME companion
library.

Assuming the library search path is correctly set, add the following to the link line:

-lmme_host or -l mme_companion

Note: The ST40 and ST200 toolsets perform linking in a single pass. For this reason the MME
libraries must be included after the EMBX libraries or the application will fail to link.

Multicom Using the MME API

7574220 35/211

3.9.2 Linux

The MME API can be used on a host processor running Linux, in either kernel mode, user
mode, or both concurrently. There is a single kernel module that must be loaded and a
single library that must be linked with a user application.

The MME kernel module is called mme_host.o. This is loaded after all the EMBX modules
(see Section 9.3.2: Linking and loading on page 81 and Appendix A: Transport
configurations on page 192). Comma-separated module parameters are used to specify
previously registered EMBX transports to be used by MME. Up to four EMBX transports
may be specified each with the following syntax:

 transport<N>=name

The following example illustrates MME module parameters for two EMBX transports, SHM_X
and SHM_Y:

 insmod mme_host.o transport0=SHM_X,transport1=SHM_Y

If no transport parameters are supplied MME can only by used with local transformers.

For Linux user mode the application need only link against libmme_host.a(c), however,
the resultant application will require the mme_host.o kernel module to be loaded into the
kernel in order to operate correctly. Assuming the library search path is set correctly, add the
following to the link line:

-lmme_host

It is meaningless for a Linux user application or a Linux kernel module to call
MME_RegisterTransport() or MME_DeregisterTransport()because EMBX
transports are registered when the module is loaded and deregistered when the module is
unloaded. Furthermore, it is not valid for a Linux kernel module to call MME_Init() or
MME_Term() because initialization and de-initialization occur automatically when the
module is loaded and unloaded.

3.9.3 STLinux 2.3 and udev support

The STLinux 2.3 release enables dynamic device support using udev. This allows device
drivers to dynamically create device files in /dev.

However, in order to use this facility Multicom has to make use of GPL only exported
functions. This code path is not enabled by default and must be enabled by specifying
ENABLE_GPL=1 in the Multicom build options.

If you do not wish to build the Multicom modules under a GPL licence then you will need to
statically create the mme device entry under lib/udev/devices in the target file system,
or disable udev support when using the STLinux 2.3 release.

c. The user mode library libmme_host.a uses a device node /dev/mme to communicate with the MME kernel
module. If this node does not exist then all API functions, including MME_Init will return
MME_DRIVER_NOT_INITIALIZED.

The device node should be a character device with major number 231 and minor number 0. If it does not exist,
then create it with the following command:

mknod /dev/mme c 231 0

For file systems such as NFS or HDD the device node will persist across system reboot, so this command need
only be run once.

Writing an MME transformer Multicom

36/211 7574220

4 Writing an MME transformer

4.1 Overview
This chapter describes the process of interfacing a transformer to the MME API for use by
applications. It is assumed that the reader is completely familiar with the MME API
described in Chapter 3: Using the MME API.

The function to register transformers, MME_RegisterTransformer, is introduced in
Section 3.2.3 on page 23. This function takes as arguments, five function pointers which are
called by MME when a transformer-specific operation is requested by the application, see
Table 6. All transformers are therefore required to provide five functions corresponding to
the function pointers required by MME_RegisterTransformer. The specification of each
of these functions is described in this chapter.

In addition to providing the five functions, all but the most basic transformer will require
parameters to control how it processes data. The parametric information is typically defined
in a transformer specific header file included by both the application and the transformer
code. Detailed information on passing parameters in a portable, endian-neutral manner is
discussed in Section 4.7 on page 45.

The process for writing a transformer is identical whether you are targeting the host or a
companion processor although obviously where the host and companion have different
CPU architectures then optimization decisions (such as data buffer management) may have
to be revisited. Transformers that utilize a hardware accelerator require only a small amount
of extra complexity in the MME interface to manage asynchronous processing. This is
described further in Section 4.4.2: Deferred commands on page 41.

4.2 Managing transformer lifetimes
Two of the function pointers required by MME_RegisterTransformer are concerned with
managing the lifetime of a transformer. The transformer must implement the corresponding
functions, one is responsible for initializing a transformer instance while the other is
responsible for terminating it.

This initialization function pointer is of type MME_InitTransformer_t:

typedef MME_ERROR (*MME_InitTransformer_t) {
 MME_UINT initParamsLength,
 MME_GenericParams_t initParams,
 void **context)

Table 6. Transformer function pointers

Function pointer type Description

MME_AbortCommand_t Transformer API function to abort a command.

MME_GetTransformerCapability_t
Transformer API function to return a transformer
capability.

MME_InitTransformer_t Transformer API function to initialize a transformer.

MME_ProcessCommand_t Transformer API function to process a command.

MME_TermTransformer_t Transformer API function to terminate a transformer.

Multicom Writing an MME transformer

7574220 37/211

The termination function pointer is of type MME_TermTransformer_t:

typedef MME_ERROR (*MME_TermTransformer_t) (void *context)

4.2.1 Instantiation

MME_InitTransformer_t is called as a result of an application call to
MME_InitTransformer, see Section 3.3: Managing transformer lifetimes on page 24.

MME_InitTransformer_t is supplied with three parameters:

● a pointer to the transformer specific parameter block initParamsLength

● the length of this block

● context, in which it must store a pointer to its state information

If the transformer does not take any specific initialization parameters (or the application
neglected to provide them) initParams is NULL and initParamsLength is zero.

If it is not possible to initialize a transformer instance, either because the supplied
parameters are incorrect, or because there is no available hardware resource, then
MME_InitTransformer_t can return an error code. Otherwise as a result of this function
being called the transformer must:

● reserve any hardware resources required by the transformer when running

● allocate memory to contain state and parametric information of the transformer
instance and return the address of this in the context arguments

● initialize any relevant state within the context structure

● copy any relevant parametric information from the parameter block into the context
structure.

The parameter information must be copied since the transformer can no longer
address any part of the parameter block once this initialization function has completed.

● provide the MME framework with a pointer to context data specific to the transformer
instance

4.2.2 Context data

The context data is key to managing multiple instances of a transformer, and must contain
all state relevant to a transformer instance. Any temporary working values must be stored in
the context data. A transformer that can be instantiated multiple times must avoid global
variables. In fact, because the transformer may be instantiated at different priority levels
(allowing one instance to pre-empt another), global variables should not be used even for
temporary values.

It is possible for a single-instance transformer to statically allocate its context structure and
supply a pointer to this global variable. The initialization function for single-instance
transformers should return MME_NOMEM if the application attempts multiple instantiation.

Note: Any transformer that is not forced to operate as single-instance, through hardware
dependency should be implemented as a multiple -instance transformer. In fact, extensive
use of global variables should be avoided even for hardware transformers that are currently
single instance, because this may limit their utility in future SoC devices that may contain
multiple instances of that hardware.

Writing an MME transformer Multicom

38/211 7574220

4.2.3 Termination

MME_TermTransformer_t is called as a result of an application call to
MME_TermTransformer, see Section 3.3: Managing transformer lifetimes on page 24.
MME_TermTransformer_t takes the context parameter described in Section 4.2 to
specify the transformer instance that should be terminated.

MME_TermTransformer_t reverses all the steps performed during initialization. It
releases any hardware resources it is using and frees any memory.

4.3 Querying the capabilities of a transformer
The transformer must implement a function that permits the application to query whether a
transformer meets its requirements, see Section 3.3.1 on page 25. This function must be
compatible with the function pointer type, MME_GetTransformerCapability_t, which is
an argument of MME_RegisterTransformer():

typedef MME_ERROR (*MME_GetTransformerCapability_t) (
MME_TransformerCapability_t *capability)

MME_GetTransformerCapability_t is called as a result of an application call to
MME_GetTransformerCapability, see Section 3.3.1: Querying the capabilities of a
transformer on page 25.

Note: This function pointer is not provided with a context pointer because it is used to describe the
capabilities of the abstract transformer rather than that of a specific transformer instance.

If the capability structure capability, or the transformer-specific parameter block it
contains, is in some way incorrect then MME_GetTransformerCapability_t should
return an error. Otherwise it should populate MME_TransformerCapability_t and, if
applicable its transformer specific parameter block, capability.

The generic information a transformer must provide is its version number, which can be any
32-bit integer, and its preferred input and output data format in four character code
(FOURCC) format - see MME_DataFormat_t on page 173 for more details.

For most transformers, the application knows the size of the parameter block in advance.
Storage must be provided by the application. Such transformers should return an error if the
parameter block is incorrectly sized.

In order to cope with transformer specific parameters of a variable size, the transformer
must provide a means for the application to query how much memory it should provide for
the parameters to be correctly stored.

There are many ways this could be achieved. The recommended approach is to define a
fixed size parameter block that contains the actual size the parameter block is required to
be, and use this to tell the application how much memory to allocate.

Multicom Writing an MME transformer

7574220 39/211

The following example shows part of the header file for a transformer that requires a
capability structure of varied size:

enum STExampleInfoSize {
 MME_OFFSET_STExampleInfoSize_StructSize,
 MME_LENGTH_STExampleInfoSize

#define MME_TYPE_STExampleInfoSize_StructSize U32
};
typedef MME_GENERIC64 STExampleInfoSize_t[MME_LENGTH_STExampleInfoSize];

enum STExampleInfo {
 ...
}
/* can not typedef STExampleInfo since it is of variable size */

The above transformer would be queried from application code in the following way:

MME_ERROR err;
MME_TransformerCapability_t capability;
STExampleInfoSize_t query;
MME_GENERIC64 *info;

capability.StructSize = sizeof(MME_TransformerCapability_t);
capability.TransformerInfoSize = sizeof(STExampleInfoSize_t);
capability.TransformerInfo_p = &query;
err = MME_GetTransformerCapability("STExample", &capability);
/* check for errors */

capability.TransformerInfoSize = MME_PARAM(query, STExampleInfoSize_Structsize);
info = malloc(capability.TransformerInfoSize));
capability.TransformerInfo_p = info;
err = MME_GetTransformerCapability("STExample", &capability);
/* check for errors */

4.4 Processing a command
The transformer must implement a function that supports the processing any of the three
types of commands introduces in Section 3.7: Types of commands on page 32. The function
must be compatible with the function pointer type, MME_ProcessCommand_t, which is an
argument of MME_RegisterTransformer():

typedef MME_ERROR (*MME_ProcessCommand_t) (
void *context,
MME_Command_t *commandInfo)

MME_ProcessCommand_t is called as a result of an application call to
MME_SendCommand, see Section 3.6: Issuing commands on page 29.

This function is supplied with the context pointer described in Section 4.2: Managing
transformer lifetimes on page 36. It is also supplied with the command structure
commandInfo, describing the actions requested of the transformer. The command
structure consists of two parts: the incoming command request and the outgoing command
status.

The command request portion is filled in by the application before calling
MME_SendCommand and contains incoming parameters and any data buffers relevant to the
command.

Writing an MME transformer Multicom

40/211 7574220

MME_Command_t contains a status structure MME_CommandStatus_t that is updated by
MME before and after calling MME_ProcessCommand_t. During processing only the status
structure parameter block and command identifier contain useful values. The parameter
block is filled in by the transformer in order to pass back state information to the application,
see Section 3.5: Application and transformer specific data on page 29. The command code
is used to uniquely identify a particular command; in particular this identifier is used if ever a
command must be aborted, see Section 4.5: Aborting commands on page 44.

Note: Although the transformer specific parameter block held in the command’s status structure
should be filled in by the transformer, the status structure itself must be treated by the
transformer as read-only. All fields are updated automatically by MME.

If the command request is malformed in any way then this function should return an error
code. The following list, though not exhaustive, provides a few ways in which a command
can be badly formed:

● Wrong number of input or output buffers

● Incorrectly sized input or output buffers

● Badly formed or incorrectly sized parameter block attached to the command request

● Incorrectly sized parameter block attached to the command status
MME_CommandStatus_t. (It is not possible for the outgoing parameter block to be
badly formed because they are assumed to be uninitialized data when
MME_ProcessCommand_t is called)

Note: In systems where data buffers can be corrupted during transit, transformers are required to
gracefully handle badly formed input buffers. It is possible to handle this by simply returning
an error, but this often makes it difficult for the application to handle failures. For this reason
it is usually preferable for a transformer to make the best possible attempt to decode the
data and use the transformer specific status parameters to indicate to the application that
the output may be incorrect.

For correctly formed commands, the exact action required by the transformer depends upon
the command code supplied by the application. For this reason, typical implementations of
this command simply examine the command code and call a helper function. For example:

MME_ERROR EXMPL_ProcessCommand(void *ctx, MME_Command_t *cmd)
{

switch (cmd->CmdCode) {
case MME_TRANSFORM:

return EXMPL_Transform(ctx, cmd);
case MME_SEND_BUFFERS:

return EXMPL_SendBuffers(ctx, cmd);
case MME_SET_GLOBAL_TRANSFORM_PARAMS:

return EXMPL_SetParameters(ctx, cmd);
};

return MME_INVALID_ARGUMENT;
}

Note: Frame based transformers do not usually support the MME_SEND_BUFFERS command so
that value is often omitted from the switch statement.

The MME_TRANSFORM command instructs the transformer to perform a data transformation
either on buffers supplied with the command or, for streaming transformers, on buffers sent
using the MME_SEND_BUFFERS command. The MME_TRANSFORM command should not
complete until at least a single frame of data has been processed.

Multicom Writing an MME transformer

7574220 41/211

Note: If the transformer has the concept of frames and follows the streaming model then the
transformer must be provided with a parameter identifying how many bytes of data should
be processed before the command completes.

The MME_SET_GLOBAL_TRANSFORM_PARAMS command is used to update parameters that
affect all subsequent transforms. Such command typically have very short execution times
since they need only alter a few parts of the context structure prior to returning.

The MME_SEND_BUFFERS command partners with the MME_TRANSFORM command to
supply data buffers to a streaming transformer. This command is discussed in detail in
Section 4.4.3: Streaming and hybrid transformers on page 43.

4.4.1 Communicating with the application

For simple transformers, all communication with the application is managed automatically.
When a command completes its processing, and returns an error code by its processing
function, MME automatically notifies the application that the command has finished
processing.

When a transformer needs to initiate communication with the application, the following
function is used:

MME_ERROR MME_NotifyHost(
MME_Event_t event,
MME_Command_t* commandInfo,
MME_ERROR errorCode)

The circumstances when this function is required are identified by the event type:

● MME_COMMAND_COMPLETED_EVT, used to mark a deferred command (see
Section 4.4.2: Deferred commands on page 41) as completed,

● MME_DATA_UNDERFLOW_EVT and MME_NOT_ENOUGH_MEMORY_EVT, used by
streaming transformers (see Section : Underflow and insufficient memory handling on
page 43) to indicate to the application that they have have exhausted either input or
output buffers respecitvely.

commandInfo is the pointer originally supplied to the processing function while the error
code is the value that the implementation will store in the error field of the command status
prior to making any callbacks.

Note: It is not safe to call MME_NotifyHost from an interrupt handler.

4.4.2 Deferred commands

Deferred commands provide a means for a transformer to delegate some or all of its
functionality to an asynchronous processing device such as a hardware accelerator.

A transformer indicates that it has deferred a command through a special error code,
MME_TRANSFORM_DEFERRED. This return code indicates to MME that the command has
not completed but that no further processing can be performed by the processor.

Note: Since the command has not completed no callback will take place on the host after the
processing function returns MME_TRANSFORM_DEFERRED. The host can be notified
explicitly by the transformer code through calls to MME_NotifyHost described in
MME_NotifyHost on page 154.

Writing an MME transformer Multicom

42/211 7574220

Before returning MME_TRANSFORM_DEFERRED the transformer must ensure the command
will complete at some point in the future. This is achieved by carrying out the following
actions.

● Remember the MME_Command_t * pointer passed into the processing function. This
pointer is required when the time comes to notify the host processor that processing is
complete.

● Set up an asynchronous event that will cause the command to complete at some point
in the future. This is typically achieved by configuring an interrupt handler/task pair that
will be signaled when the hardware accelerator has completed its work. A task will be
required because it is not permitted to call any of the MME API functions from an
interrupt handler.

If an MME_SEND_BUFFERS command returns MME_SUCCESS, it is deferred just as if it had
returned MME_TRANSFORM_DEFERRED. This is because it is incorrect for a
MME_SEND_BUFFERS command to complete successfully without asynchronous processing
by a matching MME_TRANSFORM command. In this case there is no need for the transformer
to configure an asynchronous event because command execution by the MME already
provides this.

Pipelined transformers

A pipelined transformer is a special case of a deferred transformer. Pipelined transformers
avoid having to setup an asynchronous handler, by checking the state of the hardware
accelerator from a subsequent transform command. This is broadly analogous to the classic
fetch-decode-execute pipeline common in microprocessor architectures.

The following example shows the management code for a simple two-stage pipelined
transformer.

MME_ERROR Pipelined_Transform(void *ctx, MME_Command_t *cmd)
{

MME_ERROR err1, err2;

/* Do the first part of the transform in software */
err1 = Pipelined_FirstHalfInSoftware(ctx, cmd);

if (ctx->lastCmd) {
/* There is a deferred command - wait for it to complete */
/* err2 is the MME_ERROR code to set in the command’s status */
err2 = Pipelined_WaitForPreviousSecondHalf(ctx, ctx>lastCmd);
MME_NotifyHost(MME_COMMAND_COMPLETED_EVT, ctx->lastCmd, err2);

}

if (MME_TRANSFORM_DEFERRED == err1) {
/* The first part is in a deferred state - remember this */
ctx->lastCmd = cmd;
/* this function returns MME_TRANSFORM_DEFERRED if successful */
err1 = Pipelined_SetupSecondHalf(ctx, cmd);

} else {
ctx->lastCmd = NULL;

return err1;
}

Pipelined transformers block execution for the previous stages of the pipeline to complete. If
the software side is running ahead of the hardware side then the transform function blocks
and at this point, execution of all commands on the current processor, of the same priority,

Multicom Writing an MME transformer

7574220 43/211

halt. In the above example Pipelined_WaitForPreviousSecondHalf blocks, using an
operating system primitive, until the hardware side has completed.

Poorly-tuned pipelined transformers can be harmful to processor bandwidth. Pipelined
transformers are therefore best implemented only for single purpose companion processors.

Note: Pipelined_WaitForPreviousSecondHalf must not busy wait as this will disrupt
processing at lower priorities.

4.4.3 Streaming and hybrid transformers

Streaming and hybrid transformers are required to support the MME_SEND_BUFFERS
command since this is how their data buffers are delivered.

Like all other commands the MME_SEND_BUFFERS command should return an error code if
the command structure is in some way invalid. It is also permissible to return an error if the
transformer instance’s buffer queue is full. If the processing function returns an error for a
send buffers command the application will be immediately notified.

Otherwise, on receipt of an MME_SEND_BUFFERS command a streaming transformer must
store the command within its context structure ready for it to be used by the corresponding
MME_TRANSFORM command.

Note: The MME_SEND_BUFFERS command interrupts the currently executing command in order to
deliver the buffers. The implementation of the send buffers command should therefore
perform the smallest amount of work possible in order to minimize the cost of this
interruption. Examination of data buffers and chaining of scatter pages are best left to the
MME_TRANSFORM command.

After storing the MME_SEND_BUFFERS command in the context structure the processing
function should return MME_SUCCESS. At this point the command will be deferred until it is
marked as completed through execution of a MME_TRANSFORM command.

When the MME_TRANSFORM command, by calling MME_NotifyHost, marks a
MME_SEND_BUFFERS command as completed, it guarantees that it will no longer access
any part of that command, including its data buffers.

Underflow and insufficient memory handling

When a streaming transformer has insufficient input data to continue, it is required to emit
MME_DATA_UNDERFLOW_EVT by using MME_NotifyHost. Similarly if there is insufficient
output data, it is required to emit MME_NOT_ENOUGH_MEMORY_EVT.

In both cases, after emitting an event, the transformer must then use an operating system
primitive such as a semaphore to suspend execution of the current thread.

Note: The transformer must not busy wait as this will disrupt processing at lower priorities.

When an MME_SEND_BUFFERS command is received that permits the processing of the
command to continue, the transformer should use the operating system primitive to wake up
the previously blocked thread.

Writing an MME transformer Multicom

44/211 7574220

4.5 Aborting commands
The transformer must implement a function that permits commands to be aborted. This
function must be compatible with the function pointer type, MME_AbortCommand_t, which
is an argument of MME_RegisterTransformer():

typedef MME_ERROR (*MME_AbortCommand_t) (
void *context,
MME_CommandId_t commandId)

MME_AbortCommand_t is called as a result of an application call to MME_AbortCommand,
see Section 3.6.1: Aborting commands on page 31.

A call to this function is not a demand to abort the command but a request that the
transformer may, in certain circumstances, choose to ignore. If the transformer is not able to
abort the command it should return MME_INVALID_ARGUMENT.

MME never attempts to terminate a transformer with outstanding commands. Any command
that is unable to complete without some further action being performed on the transformer
must support aborts. Some examples of commands that are required to support abortion
include:

● all MME_SEND_BUFFERS commands

● commands blocked after data underflow or overflow

● pipelined commands

Commands are marked as aborted by one of the following methods:

● by returning MME_SUCCESS from MME_AbortCommand_t

● by calling MME_NotifyHost with the event code MME_COMMAND_EVT and the error
code MME_COMMAND_ABORTED

● by returning MME_COMMAND_ABORTED from MME_Process_Command_t.

The call to MME_NotifyHost can be made from any thread, including the abort function,
the processing function or from asynchronous threads owned by a deferred transformer.

Note: When aborting a command using any of the above methods, the transformer guarantees
that the following conditions are met.

● No further execution time is spent on the command.

● No further use is made of any part of the MME_Command_t structure, including data
buffers. This means that no further calls to MME_NotifyHost are made.

● No further attempt is made to mark the command aborted. Thus if
MME_AbortCommand_t calls MME_NotifyHost or expects the currently executing
command to read from the command structure or to return any value except
MME_TRANSFORM_DEFERRED then the abort command must itself return
MME_TRANSFORM_DEFERRED.

Thus MME_AbortCommand_t should return MME_SUCCESS only if the command has
already been aborted and the host has not been notified by another means.

Multicom Writing an MME transformer

7574220 45/211

4.6 Scheduling and re-entrancy
MME utilizes multiple threads and it is important that transformer functions are written in
such a manner that thread safety is maintained.

Neither initialization nor termination have any thread safety issues. The functions are not re-
entered, nor will any other transformer interface function be called during these operations.

Note: It is a pre-condition of the termination function that all outstanding commands complete, and
this is assured by MME.

Similarly calls to MME_GetTransformerCapability_t (see Section 4.3 on page 38) are
serialized.

For a single instantiated transformer, up to three threads can operate over the same context
structure at the same time. These are:

● An execution thread that calls the processing function with a command code of either
MME_TRANSFORM or MME_SET_GLOBAL_TRANSFORM_PARAMS.

● A manager thread that calls the processing function with a command code of
MME_SEND_BUFFERS.

● A manager thread that calls the abort function.

In summary the MME_ProcessCommand_t can be re-entered but not with the same
command code, while MME_AbortCommand_t cannot be re-entered. It is a requirement
however, for transformers to protect access to any variable or list that is manipulated by
multiple threads.

Note: Transformers that do not support MME_SEND_BUFFERS or MME_AbortCommand_t are
implicitly thread-safe.

4.7 Parameter passing
Many of the MME functions take transformer specific parameter blocks specified in MME
structures as MME_GenericParams_t, see Section 3.5: Application and transformer
specific data on page 29. In each case the parameter block is described using a pointer to a
generic 64-bit type and a size in bytes. Transformers that require parameters to correctly
process their input typically specify parameters in a header file shared by the application.

Note: It is not possible for a parameter block to contain pointers to other data because it may not
be possible to dereference these pointers on other processors.

On systems with identical endianness, the parameter block is presented byte for byte
identically as it passes between the application and the transformer. However on mixed
endian systems the parameter block will be treated as an array of 64-bit quantities each of
which will be byte swapped in 64-bit units. For example, the 64-bit hexadecimal integer
0x0011 2233 4455 6677 would after swapping become 0x7766 5544 3322 1100 if it were
examined on the originating processor.

It is the transformer’s responsibility to define its parameter block in such a way that it may be
safely passed between processors of mixed endianness. The way MME handles mixed
endian machines implies that the parameter block should be implemented as an array of 64-
bit entities.

MME provides a number of macros that can be used to assist the transformer and
application author to access data contained in such an array in a convenient but endian
neutral manner. These macros use a combination of constants and C preprocessor string

Writing an MME transformer Multicom

46/211 7574220

concatenation in order to provide access, both named and typed, to elements of the
parameter array.

Note: Existing transformers and their applications may continue to pass parameters as a
sequence of bytes instead of an array of 64-bit entities. This is typically achieved by
mapping a C structure as a parameter block. This approach is not portable since it relies
upon matching compiler behavior and endianness on all processors. It is not recommended
that new transformers pass their parameters in this manner.

4.7.1 Data representation

The macros provided by MME to store data into an array of 64-bit entities, use a specific
data representation. This representation allows 8, 16, 32 and 64-bit two’s complement
integers to be directly written by the CPU without any manipulation. Similarly, IEEE floating
point numbers are typically stored using their normal bit pattern.

Table 7 shows the same parameter array elements represented in both big endian and little
endian formats. The MME implementation will automatically convert between these forms
when a parameter block is copied between processors of differing endianness

The macros are aware of the size of the object they are storing allowing the base address of
the big endian values to be automatically calculated (at compile time).

4.7.2 Mapping application data structures into MME parameters

Three forms of parameter are managed by MME to support mapping of application data
structures to MME parameters. These are individual, array and parameter array. They are
used to pass individual data elements, arrays of elements and structures within structures
respectively.

The following structure is used as an example:

 struct MyParams {
 ...
 unsigned char FooBar;
 ...
 UINT32 TeePipes[10];
 ...
 struct MySubList {
 char a;
 ...
 };
 };

The field FooBar is passed as an individual parameter, the array TeePipes as an array
parameter and the structure MySubList as a parameter array.

Table 7. Data representation - endianness

Size Little endian Big endian

8 bit 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0

16 bit 0 1 _ _ _ _ _ _ _ _ _ _ _ _ 1 0

32 bit 0 1 2 3 _ _ _ _ _ _ _ _ 3 2 1 0

64 bit 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Multicom Writing an MME transformer

7574220 47/211

The descriptions in Section through to Section use enumerated constants to specify the
offset of each entry within the MME array of 64-bit parameters. The name of an entry in an
enumeration is prefixed with MME_OFFSET_, for example MME_OFFSET_FooBar.

The type of an entry is defined with a #define directive and prefixed with MME_TYPE_, for
example MME_TYPE_FooBar.

Macros are used to access the value of an entry in the MME array.

Individual parameters

An individual parameter is a single typed element of the MME parameter array. It is defined
by an offset into the parameter array together with the type information for that parameter.

To define a parameter, FooBar, a constant, MME_OFFSET_FooBar is required to describe
the offset into the parameter array at which FooBar will be found. Similarly a macro
MME_TYPE_FooBar is required to describe the type of the parameter.

MME_OFFSET_FooBar can be a preprocessor macro though normally, because is it merely
an integer, it is an enumerated constant.

MME_TYPE_FooBar must be a preprocessor macro because it contains a sequence of C
tokens.

For example the following would define a unsigned character parameter, FooBar, at offset
one.

enum {
MME_OFFSET_SomeValueAtOffsetZero,
MME_OFFSET_FooBar,
...

#define MME_TYPE_FooBar unsigned char
};

/* usage example - assign variable ‘c’ the value of the */
/* parameter FooBar */
unsigned char c = MME_PARAM(list, FooBar);

Array parameters

An array parameter is defined in the same way as a individual parameter but is immediately
followed by unused locations within the array. This allows the array parameter and an index
to be used to extract numbered elements.

Shown below is a ten element array parameter, TeePipes, followed by an normal
parameter, Flange.

Note: The array nature of TeePipes is reflected in the offset of the subsequent parameter,
Flange.

enum {
MME_OFFSET_TeePipes,
MME_OFFSET_Flange = MME_OFFSET_TeePipes + 10,
...

#define MME_TYPE_TeePipes UINT32
...
};

Writing an MME transformer Multicom

48/211 7574220

/* usage example - assign variable ‘x’ the value of the */
/* fifth element of the parameter TeePipes */
uint32 x = MME_INDEXED_PARAM(list, TeePipes, 5);

Parameter arrays as parameters

It is quite possible for a parameter array to wholly contain another parameter array to
facilitate the mapping of structures within structures into MME parameters. In this case the
parameter is defined only by its offset since its type is known to be MME_GenericParam_t.
Like array parameters the length of the parameter array is defined by the offset of the
subsequent element.

For example:

enum {
MME_OFFSET_MySublist,
MME_OFFSET_NextParameter = MME_OFFSET_MySubList +

MME_LENGTH(SubList),
...

};

/* usage example - assign variable ‘s’ to the pointer */
/* MySubList, an element of the parameter list */
MME_GENERIC64 *s = MME_PARAM_SUBLIST(list, MySubList);

Recording the length of a parameter array

Once all the offsets for a particular parameter array have been defined, the length of the
array must be defined in a standard form so that it can be returned by the MME_LENGTH
macro. This symbol is derived from the name of the parameter array.

For example:

enum SimpleIdx {
MME_OFFSET_AnInteger,

MME_LENGTH_Simple

#define MME_TYPE_AnInteger int
};

/* usage example */
l = MME_LENGTH(Simple);

4.7.3 Namespace management

The names of elements of all parameter arrays and their sub-lists occupy a single shared
namespace. For this reason care must be taken to choose parameter names such that
independent transformers do not interfere with each other. This chapter provides guidelines
on the selection of appropriate names.

Multicom Writing an MME transformer

7574220 49/211

Naming parameter arrays

All parameter arrays must have a unique name. To ensure this, it is recommended, to divide
the name of the parameter into the following three components:

1. A company or division name, for example ‘ST’. This divides the namespace and
radically reduces the chance of namespace collision.

2. Purpose or role of the transformer (such as Ac3Decoder or Mixer).

3. The operation to which this parameter list is targeted. Table 8: Recommended postfixes
for parameter array names contains guidance for standard MME operations.

4.7.4 An example

This example maps the following C structure into MME parameters:

 struct STExampleTransform {
 U32 STExampleTransformNormal;
 U8 STExampleTransformArray[10];

 struct STExampleSub {
 U32 STExampleSubNormal;
 };
 };

To copy the data listed above as an MME parameter array the transformer would add the
following definitions to its header file:

/* As a parameter sub list this list does not use the standard */
/* postfixes from the table above */

enum STExampleSub {
MME_OFFSET_STExampleSubNormal,

MME_LENGTH_STExampleSub

#define MME_TYPE_STExampleSubNormal U32
};

typedef MME_GenericParams_t
MME_STExampleSub_t[MME_LENGTH(STExampleSub)];

Table 8. Recommended postfixes for parameter array names

Operation Postfix

MME_GetTransformerCapability() Info

MME_InitTransformer()
Init, or Global if the initialization parameters
are not distinict.

MME_SendCommand()

[MME_SET_GLOBAL_TRANSFORM_PARAMS and
reply]

Global/GlobalStatus

MME_SendCommand()

[MME_TRANSFORM and reply]
Transform/TransformStatus

MME_SendCommand()

[MME_SEND_BUFFERS and reply]
Send/SendStatus

Writing an MME transformer Multicom

50/211 7574220

enum STExampleTransform {
MME_OFFSET_STExampleTransformNormal,
MME_OFFSET_STExampleTransformArray,
MME_OFFSET_STExampleTransformSublist =

MME_OFFSET_STExampleTransformArray + 10,

MME_LENGTH_STExampleTransform =
MME_OFFSET_STExampleTransformSublist + MME_LENGTH(STExampleSub)

#define MME_TYPE_STExampleTransformNormal U32
#define MME_TYPE_STExampleTransformArray U8
/* no need for MME_TYPE_STExampleTransformSublist */
};
typedef MME_GENERIC64

MME_STExampleTransform_t[MME_LENGTH(STExampleTransform)];

The following example demonstrates how an application would use the parameter array
above. It is assumed that the transformers header file will be included by the application.

/* Send some parameters with a command /*

 MME_Command_t command = { sizeof(MME_Command_t),
 MME_SET_GLOBALTRANSFORM_PARAMS,
 MME_COMMAND_END_RETURN_NOTIFY,
 ... };
 MME_STExampleTransform_t transformParams;
 MME_STExampleTransform_t transformSubParams;

 /* Set the individual element to 45 */
 MME_PARAM(transformParams, STExampleTransformNormal) = 45;

 /* Set the array element at index 2 to 70 */
 MME_INDEX_PARAM(transformParams, STExampleTransformArray, 2) = 70;

 /* Set the sub-structure element to 8 */
 MME_PARAM(transformSubParams, STExampleSubNormal) = 8;

 /* Setup the substructure within the parameter structure */
 MME_PARAM_SUBLIST(transformParams, STExampleTransformSublist, transformSubParams);

 /* Specify the parameters with the MME_Command_t structure */
 command.Params_p = &transformParams;
 command.ParamSize = MME_LENGTH_BYTES(STExampleTransform);

 MME_SendCommand(handle, &command);

Multicom Part 3 RPC user guide

7574220 51/211

Part 3 RPC user guide

The RPC user guide covers:

● Building RPC systems

● Interface declarations

● Decorating types and functions

Building RPC systems Multicom

52/211 7574220

5 Building RPC systems

5.1 Overview
Remote Procedure Call (RPC) provides a means for a C language function implemented on
one processor to transparently call a function implemented on a different processor, and
obtain outputs and return values from the remotely-executed function. To achieve this, the
function’s arguments are marshalled into a communications buffer and transmitted to a
different CPU where the arguments are demarshalled and the remote function called. The
process is repeated in reverse when the remote function completes.

The stub code required to marshall and demarshall the arguments is automatically
generated by the RPC tools from the application’s C source code. Where the C language is
insufficient to express the necessary marshalling and demarshalling, the C source code
must be augmented by extra information called decorations, to allow the RPC tools to
generate the correct stub code. Decorations may be embedded in the C source code or held
in a separate file. Embedded decorations are removed automatically from the source code
before it is presented to the C compiler by a process known as stripping.

The structure of the RPC system is N-way symmetric, that is, essentially the same software
stack is run on all the CPUs involved in the RPC system. A single instance is shown in
Figure 5 on page 53.

RPC uses an interface definition language as a scheme for describing, in a textual form, the
C language functions which are implemented on one processor and are called from the
other. The RPC interface definition language consists of normal ANSI C supplemented with
extra information unique to RPC. These additions have a natural split between declarations
and decorations.

RPC declarations provide systems level information such as the names of the arenas, the
transport used to copy the arguments and the list of functions that are shared between
arenas. RPC declarations are discussed in Chapter 6: Interface declarations on page 57.

RPC decorations provide extra type information about a specific function argument,
structure member or type definition. The decorations are placed immediately before the
normal type information. For example the following shows a function whose character
pointer argument, s, has been decorated to ensure RPC copies s as a normal C string.

void putString(in.string(80) char *s);

Decorations extend the type system in places where C is not sufficiently expressive to
describe how to copy a particular type. Decorations are described in depth in Chapter 7:
Decorating types and functions on page 60.

The RPC generator tool reads the interface description and generates glue code called
stubs which can be compiled and linked with the program in each arena, (see Section 6.1:
Terminology on page 57). The generator tool is able to pass over C source code
automatically extracting information. This means that changes to function arguments are
automatically picked up by the generator, and descriptions of functions are not duplicated.
The disadvantage of combining RPC information with the C code is that this code cannot be
directly compiled. For this reason the RPC distribution contains a stripper tool to remove all
RPC related information from the C source code so it can be compiled with a normal C
compiler.

Multicom Building RPC systems

7574220 53/211

In some applications it may not be possible to integrate the stripper into the build system. In
this case it is possible to collect all the RPC decorations and declarations into a
supplementary file leaving the original C code untouched.

Figure 5. The structure of the RPC system

5.1.1 Structure of a typical system

RPC is a very flexible tool that permits the application designer to use only those parts that
suit their application. This section describes one typical way to structure an RPC system.
Most of the RPC examples follow this structure.

The RPC generator tools reads a single master header file that describes the structure of
the system. The number of processors and the list of functions to import, is contained within
this header. The header also includes a number of other headers where the functions to be
imported are prototyped. The prototypes in these header files contain RPC decorations
inserted into them. RPC decorations are discussed in detail in Chapter 7: Decorating types
and functions on page 60, syntactically they appear in the same place as ANSI C type
qualifiers such as const or volatile. The RPC generator uses the decorations and the
systems level description in the master header to generate all the glue code required to
perform RPC.

The header files containing RPC decorations are included by the other source files in the
application. Although the source files contain no RPC information the header files they
include do, this prevents the source files from being compiled directly. They must be stripped
of RPC information after pre-processing but before they are compiled. This extra phase to

is read by

are compiled by

Outputs

Generates

Compiled
application

Compiled
stubs

Calls Reads and writes to

EMBX
driver

Physical
comms.
mechanism

C toolchain

Application source,
Interface definition ST RPC tools

Generate
stubs

Compiled application

Build time

Run time

Building RPC systems Multicom

54/211 7574220

compilation does not extract any RPC information, nor does it generate any code. Its sole
purpose is to remove the RPC decorations from the header files so they can be processed
by standard compilers.

The code output by the RPC generator is then compiled in the same way as any other code
and linked into the application. The generated glue code contains implementations of the
RPC functions used by the application. These functions use the EMBX communications
system to call the real functions, for which they are acting as proxies.

5.2 Supplied tools
There are three tools supplied in the RPC distribution.

● The stripper, strpcstrip.
This tool removes RPC information from the C source. It is usually run after the C pre-
processor but before the actual C compiler. This makes it difficult to integrate with the
build system and it is not normally called directly by the user.

● The generator, strpcgen.
This tool parses a C pre-processed source file and uses the information to generate the
stub functions.

● A specialized compiler driver to integrate strpcstrip into the build system, rpccc.
This tool examines the C compiler’s normal arguments and issues commands to run
first the C pre-processor, then the stripper, and finally the C compiler.

5.3 Stripping with rpccc
Stripping with rpccc simply requires the build system to prefix the name of the C compiler
with ‘rpccc’.

More explicitly the usage is typically one of the following:

rpccc sh4gcc [<flags>]...

rpccc sh4-linux-gcc [<flags>]...

rpccc st200cc [<flags>]...

Where <flags> are identical to those of the normal C compiler.

The tool will behave as if the C compiler has been invoked directly except that the RPC
stripping tool will be invoked between the C pre-processor and the compiler. This allows
RPC decorations to be removed before the code is presented to the compiler.

Note: rpccc does not entirely replace the original compiler driver program. The tool only manages
pre-processing and compilation; it cannot be used to invoke the linker thus using the
compile only option (typically -c) is mandatory.

rpccc is the preferred way to ensure that all code is stripped before it is presented to the C
compiler as it facilitates in place decorations eliminating redundant information from the
interface definitions

All the examples (except the posthoc example) use rpccc to strip RPC information from
the code. This provides many examples of typical usage.

Multicom Building RPC systems

7574220 55/211

5.4 Stripping with the C pre-processor
It is possible to eliminate the stripping stage completely from RPC build systems by carefully
using macros that permit the C pre-processor to perform the stripping. This approach is
slightly more complicated than using rpccc but will, in some cases, integrate more easily
with the build system.

The basic idea is to define macros that contain the decorations when passed through the
generator but that are empty when compiled normally.

For example:

#ifdef STRPC_GENERATOR
#define IN_STRING(x) in.string(x)
#define OUT_STRING(x) out.string(x)
#define INOUT_STRING(x) inout.string(x)
#else
#define IN_STRING(x)
#define OUT_STRING(x)
#define INOUT_STRING(x)
#endif /* STRPC_GENERATOR */

/* ... */
void printString(IN_STRING(256) char *s);

Typically the supporting definitions are packaged into a header file and all files that contain
decorations must include that header.

5.5 Avoiding stripping
In some cases it is possible to avoid stripping entirely. The post-hoc addition of decorations
discussed in Section 7.10: Adding decorations post-hoc on page 65 permits RPC systems
to be constructed without modifying any of the original source. Clearly if the original source
is not modified there is no need to pass it through the stripper.

During the generation phase the information in the original source files can be
supplemented with decorations located in a different file.

An example is provided that shows a system that can be compiled without using rpccc. This
can be found in the examples/rpc/posthoc directory. Section 2.3: Examples on page 15
explains how to build and run this example.

5.6 Generating RPC stubs
The generator takes input in the form of pre-processed ANSI C that has been augmented
with additional decorations as described in Chapter 6: Interface declarations on page 57. It
produces ANSI C output that when compiled and linked with an application, allows function
calls between arenas.

The generator is called strpcgen and has the following command line:

strpcgen -i <input filename> -o <output filename> -a <arena tag>

The three parameters, -i, -o and -a, are mandatory. The <arena tag> is the arena for
which stubs will be generated.

Building RPC systems Multicom

56/211 7574220

The input must already have been processed by the C pre-processor. Thus typical usage in
a makefile would be:

disp.stubs.c : rpc_layout.h
$(CPP) $(CPPFLAGS) rpc_layout.h -o disp.stubs.cpped
strpcgen -i disp.stubs.cpped -o disp.stubs.c -a disp

The resultant C file, disp.stubs.c, can then be compiled as normal.

Note: The generated code will not contain any RPC decorations, however, it may include header
files that do. If such header files are included the generated code must still be stripped using
rpccc or some other tool before it is compiled.

It is possible for the generator to produce code that cannot be compiled. This is not always
indicative of a problem with the generator. In general the generator will issue an error if it is
unable to generate the stubs because of some problem with the RPC declarations or
decorations. There are, however, expressions that pass through the generator without ever
being fully parsed. These expressions are copied verbatim into the generated code; if these
expressions contain errors this will result in stubs that cannot be compiled. Similarly, the
headers declaration will cause the generated code to include arbitrary headers; therefore, if
these headers contain errors or define macros that clash with identifiers used in the
generated code the generated code will be uncompilable.

5.7 Linking, loading and configuring
The final stages of building an RPC system revolve around linking against the correct code
and performing the required run-time initialization.

On OS21 the application must link against the EMBX shell and the appropriate EMBX
transports. This is described in Chapter 9: Transport specifics on page 79.

In Linux user space there is no need to link against any extra libraries, the normal system
libraries are quite sufficient. However, for the application to run correctly, the EMBX shell,
the appropriate EMBX transports and the RPC micro-server (rpc_userver.o) must be
loaded into the kernel as modules.

In Linux kernel space the application must be linked against the EMBX shell and the
appropriate EMBX transport. However since linking is performed automatically by the
module loader this can be achieved simply by loading those modules into the kernel.

Once the application has been linked or loaded as appropriate to the operating system, the
EMBX transport and RPC stubs must be initialized before they can be used. Configuring the
EMBX transports is described in Chapter 9 on page 79. The RPC stubs are initialized using
the following function:

int rpcStubsInit(void *reserved);

The reserved pointer should be set to NULL.

The function returns 0 if it successfully initializes itself.

Multicom Interface declarations

7574220 57/211

6 Interface declarations

6.1 Terminology
A fundamental concept of RPC is an arena, which describes the functions that are imported
to or from the current namespace.

Each arena is identified with an arena tag, a four letter identifier used throughout the
interface definition language (IDL). An arena also has attributes such as how it is connected
to other arenas and the location of the headers where its functions are prototyped.

Typically there is one arena for each namespace in the communication system. On
operating systems such as the OS21 there is only a single namespace for the entire
application and therefore only one arena per processor. Linux however contains a
namespace for each process and another for its kernel space. On Linux therefore, it is
common for there to be more than one arena per processor.

6.2 Arena declarations
Arena declarations associate an arena tag with a particular operating system and CPU.

There may be any number of arena declarations throughout the code and each arena
declaration may describe zero or more arenas. In practice however there is typically only
one arena declaration describing at least two arenas.

The standard form is:

arenas {
 { arena-tag, os-specifier, cpu-specifier },
 ...

};

Each arena tag must be unique, subject to the same rules as C identifiers and no more than
four characters long.

The OS specifier must be selected from: OS_OS21, OS_LINUX_USER, OS_LINUX_KERNEL.

The CPU specifier must be selected from: CPU_ST40, CPU_ST200.

For example:

arenas {
{ st40, OS_LINUX_USER, CPU_ST40 }

};

6.3 Transport declarations
Transport declarations associate two arena tags with the transport mechanism that these
arenas use to communicate.

There may be any number of transport declarations throughout the code and each transport
declaration may describe zero or more associations.

Interface declarations Multicom

58/211 7574220

The standard form is:

transport {
 { arena-tag, arena-tag, transport-mechanism[, transport-name] },
 ...

};

Currently there is only one supported transport mechanism, TRANS_EMBX.

The transport name is an optional string used to select a particular EMBX transport. This is
only useful if there is more than one transport registered with the EMBX driver. If the
transport name is omitted then RPC will use the first (or only) registered transport.

For example:

transport {
 /* mstr and slv1 use the first registered transport */

{ mstr, slv1, TRANS_EMBX },
 /* mstr and slv2 use the named transport shm */

{ mstr, slv2, TRANS_EMBX, ”shm” }
};

6.4 Import declarations
Import declarations specify which functions are imported into an arena and also note the
arena in which particular functions are implemented.

There may be any number of import declarations throughout the code and each import
declaration may contain zero or more imports. The standard form is:

import {
 { function-name, importing-arena, source-arena },
 ...

};

For example:

import {
{ remoteFunc, imp, src },
{ otherFunc, imp, src }

};

6.5 Header declarations
Header declarations specify which C header files should be included with the generated
stubs. These are required so that type definitions, function prototypes and C pre-processor
macros are defined before they are used within the generated stubs.

There may be any number of header declarations throughout the code and each header
declaration may contain zero or more header lists. The standard form is:

headers {
 { arena-tag, { ”header-filename” }, ... },
 ...

};

Multicom Interface declarations

7574220 59/211

The header file name can be expressed in three forms. Each form is shown in the example
below:

headers {
/* #include ”foo.h” and in alternative form, #include “bar.h” */
{ st40, { ”foo.h”, ”\”bar.h\”” } }

};

Decorating types and functions Multicom

60/211 7574220

7 Decorating types and functions

7.1 Default behavior
The default behavior is applied to all undecorated data types. Additionally other decorations
typically augment the default behavior rather than replacing it. This makes it particularly
important to understand the default behaviors.

All undecorated data types will be treated as input parameters. Specifically this means that
their values will be copied when the function is called but will not be copied back on function
return. For structures and primitive types this is wholly intuitive since this exactly matches
the behavior of the C language. However for array and pointer types the lack of a copy back
differs significantly from C’s normal behavior. In particular, programs that use pointers to
simulate pass-by-reference will require a decoration if the function alters the target of the
pointer.

Note: Values returned from a function deviate from this rule, all return values are treated as output
parameters.

The mechanism used to copy a data type is dependant of its type. Table 9 describes how
each type will be treated.

7.2 Direction information
Direction information tells the RPC system when to copy a data type. Direction specifiers are
always the first component of a decoration. In fact all decorations must start with a direction,
some decorations will add optional information after the decoration.

Table 9. Default copying behavior for specific data types.

Type Example Technique for copying

Primitive type float Copied as is.

Normal pointer short *

Assumed to point to a single object, it is dereferenced and
the default strategy is applied again to the dereferenced
object (for example, int ** is dereferenced twice and
then copied as a single primitive).

Void pointer void *
It is impossible for RPC to pass an undecorated void
pointer thus the generator issues an error.

Arbitrary sized array int a[]
Assumed to be an array of length one. As such it is treated
identically to a pointer.

Fixed size array int a[10] Each element is copied using the default strategy.

Structure struct foo
The default strategy is applied to each structure member in
turn.

Union union bar
It is impossible for RPC to pass an undecorated union thus
the generator issues an error.

Enumerated type enum tee
In ANSI/ISO C an enumerated type is a form of integer,
enumerations are therefore copied as primitive types.

Multicom Decorating types and functions

7574220 61/211

All RPC decorations should appear immediately before the type they are decorating. For
example, the following function contains a parameter pipe decorated with the inout
specifier:

void exportedFunction(inout long *pipe);

Table 10 shows the direction specifiers used by RPC.

The directional information is inherited by all elements and members of the current data
type. For example, if a structure is specified out then all its members are copied after the
function is called (using the default strategy). This can be overridden by decorating the
structures members with alternative decorations.

For example:

struct outStruct {
int mode;
out char data[256];

};
void useOutStruct(inout struct outStruct *os);

Note: transient differs from the other directions. Because a transient data type and its
members or elements are not copied, a structure member cannot override its direction by
providing an alternative.

7.3 Strings
The default behavior for unsized character arrays and character pointers is to assume they
point to a single data element (that is an array of length one). In fact in C, character pointers
usually point to a string, that is an array delimited by the nil character. Strings are very
common in C and for this reason a decoration specifically for strings is provided.

The standard form is:

direction-specifier.string(max)

max is a constant expression that evaluates to the maximum length of the string.

For example:

void printString(in.string(256) char *s);

Note: If a string is an inout parameter, the output string cannot be longer than the input.

Table 10. RPC direction specifiers

Specifier Meaning

in Copy before the function is called.

out Copy after the function is called.

inout Copy before and after the function is called.

transient Never copy this parameter.

Decorating types and functions Multicom

62/211 7574220

7.4 Known length arrays
The default behavior for both unsized arrays and pointers is to assume they point to a single
data element (that is, an array of length one). This is clearly not always the case, so RPC
decorations are provided which allow the user to specify the number of elements in an array.

The standard form is:

direction-specifier.array([max,] len)

max is an optional constant expression that evaluates to the maximum length of the array.

len is an integer expression that evalulates to the actual length of the array. If max is
ommited len must be a constant expression. If max is supplied then the expression is
evaluated at run-time, allowing the quantity of data copied to be calculated dynamically.

For example:

/* simple fixed length array */
void getFixedData(out.array(16) int *data);

/* run-time sized dynamic array */
void printCharacters(int len, in.array(256, len) char *chars);

It is also possible for the len expression to contain the special pseudo-identifier
__struct__. This pseudo-identifier refers by value to the current structure (if there is one).
This allows one structure member to be dynamically sized by the value of a different
structure member.

For example, in the following structure the size of data, pointed to by sample is based on
the value of length:

typedef struct pcm {
int length;
in.array(48000, __struct__.length) short *sample;

} pcm_t;

7.5 Delimiter terminated arrays
There are some types of array for which it is not possible (without making a function call) to
construct an expression that evaluates to the length of an array. In these cases it may be
possible to construct a boolean expression that identifies the final element in an array. A C
string is an example of such an array although as we have seen RPC provides a special
case decoration for C strings.

The standard form for such a decoration is:

direction-specifier.termarray(max, expr)

Like the array strategy max is a constant expression that evaluates to the maximum length
of the array. In this case however it is not optional.

expr is a boolean expression that becomes true for the last element of the array. Like the
array strategy the expression can make use certain psuedo-identifiers. __element__ is
replaced by the current element in the array (by value), and __count__ is replaced by the
index of the current element.

Multicom Decorating types and functions

7574220 63/211

For example:

/* an alternative (and usually slower) way to pass a C string */
void printString(in.termarray(256, __element__ == ‘\0’) char *s);

/* an alternative (and slower) way to pass an array */
void printCharacters(

int len,
in.termarray(256, __count__ >= len) char *chars);

/* a more realistic example */
struct playlist_t {

int length;
in.string(256) char trackName[256];
in.string(256) char bandName[256];

}

void playPlaylist(
in.termarray(64, __element__.length == 0) playlist_t *pl);

7.6 Opaque pointers
An opaque pointer is assumed to be a valid pointer on the originating machine but one that
the receiving machine will never dereference. Such a pointer will only have meaning if the
recipient passes it back to the originating machine as a function argument. Opaque pointers
are most often used when providing parameters for asynchronous callbacks that are passed
back to the originator.

The standard form is:

direction-specifier.opaque

Note: Like the transient direction specifier the opaque strategy cannot be overridden by
decorations with structure members; since an opaque pointer is never dereferenced these
structure members are not copied.

For example, the following function will rearrange an array of codec requests into priority
order and uses an opaque pointer to avoid having to copy the data itself:

struct codecRequest {
int command;
int streamID;
inout.opaque short *data;

} codecRequest_t;
void prioritizeTransforms(int n, in.array(64, n) codecRequest_t
*r);

7.7 Pointers to shared memory
On platforms that possess shared memory it is possible to pass pointers to shared memory
through the RPC system. Such pointers are altered such that they point to the same part of
memory even if the pointer must point to a different address on each processor.

Note: Using shared memory is a means to trade portability for performance. Since the contents of
shared pointers are not copied they can be efficiently transferred between processors but

Decorating types and functions Multicom

64/211 7574220

this requires the system to assume that the RPC/EMBX architecture is based on the CPUs
sharing memory.

The standard form is:

direction-specifier.shared

For example:

void playPCM(int len, in.shared short *pcm);

For the shared strategy to be useful it requires the user to have some means to allocate
shared memory. EMBX_Alloc is typically used to achieve this.

Note: The RPC system will not make any attempts to maintain cache coherency when pointers
are shared. If it is possible for the shared data to be held in either CPU’s cache then this
must be flushed before it is read (or written) by the other CPU.

7.8 Type definitions
RPC decorations can be applied to type definitions as well as to function arguments and
structure members.

When a particular type is used by a large number of functions it is simpler and more
maintainable to apply the appropriate decorations to the type rather than to the functions
themselves.

For example:

typedef inout.string(4096) char *string_t;

7.9 Function pointers and callbacks
Pointers to functions are specially treated by RPC. As the pointers are transferred through
the RPC system their values are altered in a particular manner such that values remain
sensible for imported functions. Functions that are not imported to or from a particular arena
will be converted to NULL.

Specifically, assume a function is imported to a particular arena and a pointer to its stubs
function is passed using RPC. The pointer is automatically converted to a pointer to the
implementation of that function.

Similarly if a function is exported from a particular arena then a pointer to its implementation
will be converted into a pointer to the stub function when it is passed.

Function pointers are handled automatically without any decorations although when
implementing callback style interfaces the opaque strategy is particularly useful.

For example, the following system allows the arena cb to register callback using
registerCallback, thus permitting arena reg to issue a callback at some later point:

void registerCallback(void (*cb)(void *), in.opaque void *d);
void callback(in.opaque void *d);

import {
{ registerCallback, cb, reg },
{ callback, reg, cb }

};

Multicom Decorating types and functions

7574220 65/211

7.10 Adding decorations post-hoc
In some source bases it is thought inappropriate to modify the original source code by
adding decorations. If the original source code is supplied by a third party or forms part of
the system headers it would be difficult to add decorations without affecting other programs.
Similarly limitations in the build system make it difficult to strip the decorations from the
source code.

In order to cope with such source bases, RPC allows decorations to be added to
declarations that have already been presented to the generator.

The standard form is:

rpc_info {
declaration-or-function-prototype

};

Declarations and function prototypes contained within the rpc_info block should be
identical to the original declarations, with the exception that these declarations may contain
RPC decorations.

For example, the declaration below shows how to add decorations to two functions from the
standard C libraries.

Note: That this is purely an example, in general trying to export standard C functions will result in
symbol clashes at link time.

#include <stdio.h>

rpc_info {
int puts(in.string(256) const char *s);

/* we assume stdout, stderr etc. will be initialized using opaque
 * pointers before fputs is called.
 */
int fputs(in.string(256) const char *s, in.opaque FILE *stream);

};

Part 4 EMBX user guide Multicom

66/211 7574220

Part 4 EMBX user guide

The EMBX user guide covers:

● Using the EMBX API

● Transport specifics

Multicom Using the EMBX API

7574220 67/211

8 Using the EMBX API

8.1 Overview
The EMBX API provides an interface through which all communication is accomplished,
regardless of the underlying hardware mechanism being used to transfer data.

EMBX is supplied with a number of transports which control in detail the method of
communication. Generally, a transport can manage communication between any number of
CPUs(a) and there can be any number of transports active at one time.

The application can create named ports within a transport. A port is used to receive
communication events and follows a multi-drop model. Specifically a port provides for single
direction communication and can be connected to any number of data sources. Two way
communication is achieved by logically pairing ports together at the application level. In
general there are no fixed limits on the number of ports within a transport(a).

Before an application can send a message to a port it must make a connection to that port.

Communication events can take three forms. The first is a message event; messages are
contained in buffers allocated by the application from a particular transport’s memory pool.
The other forms relate to distributed objects. A distributed object is a block of memory
allocated by the application and registered with a transport. An object update event is used
when changes to the contents of that object need to be propagated to other processors.
One form of object update informs the process that the object has been updated, the other
does not.

Although EMBX allows multiple transports to be active at the same time it does not support
cross transport communication directly. Applications that require such communication must
perform this manually.

8.1.1 The EMBX shell

The EMBX API is implemented as a library or Linux kernel module called the EMBX shell.
This library provides high level error checking, handle management and operating system
abstraction services.

Each different transport type is provided in its own library or kernel module. An application
for a single binary environment such as OS21 picks which transport libraries it needs to link
against. In the Linux kernel environment, transport modules can be loaded and unloaded
dynamically.

The shell defines an internal interface between itself and a transport implementation, whose
definition is outside the scope of this document. New transports can be produced, without
modification of the EMBX shell or the external API, by developing code to implement this
internal interface.

a. A specific transport may have limits on the number of CPUs or ports associated with it.

Using the EMBX API Multicom

68/211 7574220

8.2 Initialization
Initialization is divided into three distinct phases. These are:

● specifying which transports should be created and their configuration

● initializing EMBX

● opening a transport

Due to the variety of system environments supported by EMBX the first two steps are not
strictly ordered. That is, it is possible to initialize EMBX before specifying any transport
configurations.

Typically an OS21 based application will register transports before initializing EMBX simply
because this allows a more natural split between system configuration code and generic
application code.

In a Linux environment it is not possible to register transports before EMBX is initialized.
Transports can only be registered once the kernel module implementing them has been
loaded into the kernel and transports cannot be loaded into the kernel until the EMBX shell
has been loaded. The EMBX shell automatically initializes itself as it loads, thus ordering is
imposed by the inter-dependencies of the kernel modules.

8.2.1 Registering transport factories

Transports are created using transport factories, which consist of a factory function and a
configuration structure. A particular transport implementation will provide a public header
file, which contains prototypes for the factory functions and defines the configuration
structures it supports. A single transport implementation may export any number of factory
functions in order to support different variations of the transport or the underlying hardware
platforms.

A transport factory is registered with the EMBX driver using:

EMBX_ERROR EMBX_RegisterTransport(
EMBX_TransportFactory_fn *fn,
EMBX_VOID *arg,
EMBX_UINT arg_size,
EMBX_FACTORY *handle);

This call makes a copy of the configuration argument, which leaves the application free to
destroy the original configuration data after the call. The call returns a factory handle that
can be used to unregister the factory at a later time. Within the Linux kernel environment,
registering a transport factory increases the module reference count on the EMBX API
module ensuring the module cannot be unloaded until all transport factories have been
unregistered.

Note: A transport factory function attempts to create a transport based on the configuration
argument provided. The factory checks, as far as it is possible, that the configuration
requested is correct for the system the code is running on. Should this check fail then the
transport is not be created.

However, if the transport is not created, the call to EMBX_RegisterTransport still
succeeds as the transport has been successfully registered. This is because the
initialization of a registered transport is actually deferred until EMBX_Init is called.

The transport query calls provide a means to detect failure to create a registered transport
(see Section 8.3.1 on page 69).

Multicom Using the EMBX API

7574220 69/211

8.2.2 Initializing EMBX

The EMBX driver is initialized using the following function:

EMBX_ERROR EMBX_Init(void)

The EMBX driver must be loaded and initialized on each processor that wishes to
participate in the system. With the exception of EMBX_RegisterTransport and
EMBX_UnregisterTransport, no API can be called until the driver is initialized.

In a system where multiple processes wish to use the driver, it is permissible for each
process to call EMBX_Init. The first call performs initialization, returning EMBX_SUCCESS if
no error occurs. Any subsequent calls simply return EMBX_ALREADY_INITIALIZED. That
is, a second call to EMBX_Init does not re-initialize an already initialized driver.

Note: Calls to EMBX_Init are not counted. Thus particular care must be taken de-initializing the
driver when sharing the EMBX between multiple processes.

On Linux, the EMBX is automatically initialized when the EMBX shell module is loaded and
it is automatically de-initialized then the module is unloaded. It is therefore unnecessary for
other modules using the API to call either EMBX_Init or EMBX_Deinit.

EMBX_Init causes all registered transport factories to be called with their configuration
argument. Those transports that are successfully created are available for use once the call
completes.

Note: It is possible for no transport factories to be registered at this point, or for all the factories to
fail; in which case no transports will be available.

8.3 Transports

8.3.1 Querying transports

In most cases, an application will know all of the transports it needs to use. However, in
order to allow greater flexibility in an application’s architecture, two API mechanisms can be
used to query available transports.

EMBX_ERROR EMBX_FindTransport(EMBX_CHAR *name, EMBX_TPINFO *tpinfo)
EMBX_ERROR EMBX_GetFirstTansport(EMBX_TPINFO *tpinfo)
EMBX_ERROR EMBX_GetNextTransport(EMBX_TPINFO *tpinfo)

EMBX_FindTransport is used to lookup a transport whose name is already known. This is
useful to check that a registered transport was correctly initialized.

The other two functions are used to iterate through the list of available transports

All three functions populate a transport information structure which contains the elements
described in Table 11 on page 70.

Using the EMBX API Multicom

70/211 7574220

Note: The grayed items in Table 11 are valid only once a transport is initialized by a successful call
to EMBX_OpenTransport (see Section 8.3.2); this is indicated by the isInitialized
flag in the structure.

It is also possible to extract the transport information structure for an open transport using
the following function:

EMBX_ERROR EMBX_GetTransportInfo(EMBX_TRANSPORT tp, EMBX_TPINFO *tpinfo)

8.3.2 Transport open and close

Transport handles can be opened and closed using the following functions:

EMBX_ERROR EMBX_OpenTransport(EMBX_CHAR *name, EMBX_TRANSPORT *tp)
EMBX_ERROR EMBX_CloseTransport(EMBX_TRANSPORT tp)

Application code requires a transport handle to call any of the communication or allocation
functions. In a system containing multiple processes, each process wanting to use the
transport should open a transport handle. If successful EMBX_OpenTransport will supply
a transport handle which is passed in other API calls to identify which transport is to be
used.

If this is the first time a transport handle is opened the call initializes the transport. This
includes connection to whatever underlying mechanism is being used to implement the
transport. This may involve performing a handshake with partner devices. Thus there is no
guarantee that this call will return control to the controlling application; if the partner devices
are incorrectly configured it is possible for this call to block forever waiting for a
communication that cannot happen. Any initialization time-outs must be managed by the
application from another thread.

Table 11. Transport information structure elements

Name Type Description

name EMBX_CHAR *
ASCII string name of the transport, limited to
EMBX_MAX_TRANSPORT_NAME characters in length.

isInitialized EMBX_BOOL Is this transport in an initialized state?

usesZeroCopy EMBX_BOOL
Flag indicating the transport’s copy semantics for
buffer sends.

allowsPointer
Translation

EMBX_BOOL
Flag indicating if buffer pointers belonging to this
transport can be translated to and from opaque values
and be safely transmitted as part of a message.

allowsMultiple
Connections

EMBX_BOOL
Flag indicating if this transport allows ports to be
created that accept multiple connections.

maxPorts EMBX_UINT
The maximum number of ports the transport supports,
zero indicates no upper limit, given the available
resources in the machine.

nrOpenHandles EMBX_UINT
The number of currently open transport handles to this
transport.

nrPortsInUse EMBX_UINT The number of ports currently active on a transport.

memStart EMBX_VOID * Beginning of the transport’s memory pool.

memEnd EMBX_VOID * End of the transport’s memory pool.

Multicom Using the EMBX API

7574220 71/211

A transport can be closed only when there are no open port handles associated with it;
applications must explicitly close all of their open port handles before closing a transport
handle. At this point the driver releases the resources associated with the handle. Using it
after the call completes results in undefined behavior.

Note: When a buffer is allocated it implicitly stores a copy of the transport handle within the buffer.
For this reason all buffers associated with a transport should be deallocated before that
transport is closed.

8.4 Buffer management
The EMBX API provides an efficient mailbox communication system. This is a style of
communication rather like writing a letter, the application gets a message buffer, fills it with
information and then posts it to a destination port. Once the buffer has been sent the
sending application no longer owns nor can use the buffer.

Each transport allocates memory of a type that is appropriate for that transport mechanism.
Depending on the transport type, the memory used for buffers may have to be:

● in contiguous physical memory (not part of a virtual address space)

● in a part of the address map that can be accessed by multiple processors in the system

● uncached

Some transports choose to implement their own memory management mechanism others
just use the system allocator. Transports requiring memory with specific properties are likely
to use their own allocator; such a transport’s configuration usually specifies the amount of
memory available and possibly even the physical address range that can be used by the
transport.

The lifetime of buffers is managed by the transport, allowing for safe semantics when closing
ports with outstanding messages and avoiding memory leaks.

8.4.1 Buffer allocation and release

The following functions allow buffers to be allocated or deallocated from the buffer pool
belonging to a transport:

EMBX_ERROR EMBX_Alloc(EMBX_TRANSPORT tp, EMBX_UINT size, EMBX_VOID **buffer)
EMBX_ERROR EMBX_Free(EMBX_VOID *buffer)

Allocation operates in a similar manner to standard operating system memory allocation
mechanisms.

EMBX_Free does not require the transport handle since this is stored internally. However,
just as in conventional memory management schemes, passing garbage or an already
released pointer is likely to corrupt the system.

8.4.2 Querying buffer size

The following interface allows the applications to determine the underlying size of a buffer:

EMBX_ERROR EMBX_GetBufferSize(EMBX_VOID *buffer, EMBX_UINT *size)

This can be used on buffers returned from EMBX_Receive (see Section 8.7.1: Receiving
message and object events on page 75) to find the actual size of a buffer rather than just the
number of valid bytes of data.

Using the EMBX API Multicom

72/211 7574220

Note: Some transports will actually allocate a buffer larger than that requested through
EMBX_Alloc; hence the returned size may not be identical to that passed to the call that
allocated the buffer.

8.5 Distributed objects
The mailbox style of communication is well suited for command and control type
applications; but there are situations where it is not appropriate, including:

● communicating data contained in memory that cannot be managed by EMBX

● communicating a small region of data from a larger contiguous buffer

● specifying the exact location, on the destination, where data is to be sent to

The first two situations can be solved by first copying the data into an EMBX allocated
message buffer. However, since unnecessary copying has an impact on performance this is
not ideal. The last situation is also driven by wanting to avoid an additional data copy on the
destination, usually coupled with the fact that the destination memory is being managed by
another component in the system.

In a shared memory system this could be achieved by manipulating pointers and bypassing
EMBX completely for the data path. This would, however, be likely to result in difficult to port
applications and, unless very carefully implemented, subtle and hard to find errors.

Fortunately the EMBX provides distributed objects, a means to efficiently cope with the
problems outlined above. A distributed object is a fixed size region of memory, managed by
an application on a specific CPU, which is registered with an EMBX transport and identified
by an object handle. The handle, while unique within the transport, is common to all
processors participating in the transport. This allows distributed objects to be passed in
message buffers, RPC arguments as well as through object update events. This provides
flexibility to the application programmer allowing them to select the data flow that best suites
their purposes.

8.5.1 Distributed object registration

The following functions are used to register or deregister distributed objects:

EMBX_ERROR EMBX_RegisterObject(
EMBX_TRANSPORT tp,
EMBX_VOID *object,
EMBX_UINT size,
EMBX_HANDLE *handle)

EMBX_ERROR EMBX_DeregisterObject(
EMBX_TRANSPORT tp,
EMBX_HANDLE handle)

Any area of memory that can be seen by the application may be registered with the
transport. EMBX does not know about, nor can it manage the lifetime of the registered
memory, thus it is the registering application’s responsibility to ensure that this memory
continues to be valid until that object is deregistered.

It is sometimes useful to register memory that has been allocated using EMBX_Alloc. Such
memory is carefully placed in memory in order to optimize memory transfers (typically by
facilitating zero copy updates). Distributed objects are designed to use the fastest copying
technique available but this can be enhanced through careful memory allocation at the
application level.

Multicom Using the EMBX API

7574220 73/211

Note: If memory returned from EMBX_Alloc is registered in whole or in part as a distributed
object it must not be used as a normal message buffer; when a buffer is transferred in that
manner the ownership is transferred potentially freeing local copies.

If the registered memory is not addressable by other processors within the transport then
the transport allocates one or more shadow objects. These shadows contain undefined
values and must be updated before they are read from.

The same piece of memory or any portion of it can be registered multiple times with the
same transport, as well as being registered with different transports at the same time. Each
registration produces a new object handle and possibly a new set of shadow objects.

When an object is deregistered all shadow objects are released and the handle becomes
invalid. Use of handles after deregistration has an undefined effect and must be avoided.

8.5.2 Querying distributed object properties

This function can, given a valid distributed object’s handle, query its location:

EMBX_ERROR EMBX_GetObject(EMBX_TRANSPORT tp,
 EMBX_HANDLE handle,
 EMBX_VOID **object,
 EMBX_UINT *size)

Depending on the underlying transport implementation this supplies a pointer to either the
original registered pointer or to a locally valid shadow copy. Therefore this call makes no
guarantees about the validity of the contents of the memory, if the shadow object has never
been updated its contents are undefined.

Note: If the handle refers to an object that does not yet have a physical representation on the
calling CPU then appropriate memory is allocated; this will fail if insufficient memory is
available.

8.6 Ports

8.6.1 Obtaining port handles

A port is an endpoint for communication; messages are sent to and read from ports. For this
to happen both the sender and receiver must have a reference to the same port, called a
port handle, of type EMBX_PORT. The following function can be used to create a port handle
capable of receiving:

EMBX_ERROR EMBX_CreatePort(
EMBX_TRANSPORT tp,
EMBX_CHAR *name,
EMBX_PORT *port)

This handle cannot be used to send data to the port and any attempt to do so will result in
EMBX_INVALID_PORT being returned. The created port is bound to the given name, which
must be unique within a particular transport, so that it can be a target for a remote
connection.

Using the EMBX API Multicom

74/211 7574220

In order to send data to a port, a connection must be made to a bound port name; this
returns a port handle that can be used to send data to the port. This is done using one of the
following calls:

EMBX_ERROR EMBX_Connect(
EMBX_TRANSPORT tp,
EMBX_CHAR *portName,
EMBX_PORT *port)

EMBX_ERROR EMBX_ConnectBlock(
EMBX_TRANSPORT tp,
EMBX_CHAR *portName,
EMBX_PORT *port)

EMBX_Connect returns an error if the port name is not found while EMBX_ConnectBlock
blocks until a port becomes bound to the name. Both functions return immediately if the port
has already been bound. This provides a synchronization mechanism between the two
participants and removes any requirement for one to start before the other.

The port handle returned from both connect calls cannot be used to receive data from the
port and any attempt to do so results in EMBX_INVALID_PORT being returned.

Note: Some transports may only permit one connection to a port to be open at one time. Thus
both the above calls can fail if the port already has a connection and the port was created in
a transport that only permits single connections.

An application can connect to any port in any transport that it can see, including ports that it
created. This allows communications from the local processor to be handled in an identical
manner to remote processors.

8.6.2 Closing ports

Closing a port handle, returned from one of the connect calls, logically breaks the
connection between sender and receiver. If the destination port was created in a transport
that allows only single connections, then this port becomes unconnected and a future call to
EMBX_Connect or EMBX_ConnectBlock will be able to successfully connect to it. Any
messages that have been successfully sent to the destination, but not been received using
EMBX_Receive or EMBX_ReceiveBlock, are not affected by the closure of this side of the
communication.

Closing a port handle, returned from EMBX_CreatePort, destroys the port and unbinds the
port’s name. All connections to the port are invalidated but not closed; any attempt to
communicate through an invalid port handle returns EMBX_INVALID_PORT. If the
application receives this return value it should close the port handle in order to free the local
resources allocated to the connection. Once the connections have been invalidated, any
blocking receivers are awoken, causing them to return an error, any pending messages on
the port are returned, unread, to the free pool and the port’s local resources are released.

Both types of port handle are closed using the following function:

EMBX_ERROR EMBX_ClosePort(EMBX_PORT port)

As with transport handles, once closed, using a port handle results in undefined behavior.

EMBX_ClosePort alone does not allow the safe cleaning up of local threads that do
blocking reads on the port. If the port were closed immediately before a thread makes its
next call to EMBX_ReceiveBlock this would result in undefined behavior since the handle
would have been closed. The solution to this is to invalidate the handle without closing it. For
receive ports this can be acheived using the following function.

Multicom Using the EMBX API

7574220 75/211

EMBX_ERROR EMBX_InvalidatePort(EMBX_PORT port)

This signals to remote connections that the port is invalid in the same way as
EMBX_ClosePort. It also interrupts tasks waiting on EMBX_ReceiveBlock, causing them
to return an error indicating that the port handle is now invalid. Finally the port handle is
marked invalid such that all future calls using the handle, with the exception of
EMBX_ClosePort, return EMBX_INVALID_PORT. The application should synchronize the
termination of all the threads, once they have detected the port has become invalid, then
finally call EMBX_ClosePort to clean up the port’s resources.

8.7 Send and receive

8.7.1 Receiving message and object events

Sending a message or an object update to a connection port posts an event on the receive
port’s queue. An event is received from a port by an application using one of the following:

EMBX_ERROR EMBX_Receive(EMBX_PORT port,
 EMBX_RECEIVE_EVENT *event)
EMBX_ERROR EMBX_ReceiveBlock(EMBX_PORT port,
 EMBX_RECEIVE_EVENT *event)

The first call does not block if no event is available, instead it returns an error. The second
call blocks until an event arrives or until it is interrupted, for instance by the port closing
down. When an event is available its details are placed in the event structure supplied by the
caller. This structure contains the following information:

● the event type, currently either EMBX_REC_MESSAGE or EMBX_REC_OBJECT,

● the handle of the object for an object event,

● a pointer to the beginning of the message buffer or object’s memory,

● the offset from the above pointer to the first valid byte of data for this event;

● the number of valid bytes (size) of data for this event.

For a message event the offset is always zero, for an object update event the offset and size
specify the region of the object that is known to contain valid information. The event
structure does not contains the actual size of the underlying message buffer or distributed
object. These can be queried using EMBX_GetBufferSize or EMBX_GetObject
respectively.

When a message buffer is received, ownership of the buffer is transferred with it. Thus the
receiving application is responsible for deallocating the buffer, either explicitly, by freeing it or
implicitly, by sending the buffer to another port. Put in different terms this means that the
application must treat any message buffer received from these calls as though it has been
obtained using EMBX_Alloc.

Note: The ownership of a distributed object is never transferred when the object is updated; it can
only be deregistered on the processor it was registered. The application is responsible for
ensuring it is not used after deregistration.

Using the EMBX API Multicom

76/211 7574220

8.7.2 Sending messages

The following function is used to send a message buffer:

EMBX_ERROR EMBX_SendMessage(EMBX_PORT port,
 EMBX_VOID *buffer,
 EMBX_UINT size)

This call delivers the given buffer to the destination port represented by the port handle.
Only message buffers that have been allocated from the same transport as the port handle
can be sent. This means that passing a message buffer received from one transport cannot
be directly sent to a different transport; the application must use distributed objects, which
can be registered with multiple transports, or simply copy the message if inter-transport
routing is required.

Send is an asynchronous operation; it may return before the message has been received by
the destination port. The send operation is reliable, that is any checking or retry mechanism
is handled transparently by the transport and ordering is preserved.

The transport only transfers the first size bytes of the message buffer in order to make
most efficient use of the transmission medium. Nevertheless the size of the underlying
buffer is maintained irrespective of the value of size; therefore providing the original buffer is
suitably large, it is quite possible for replies to be larger than the original message.

When the send call completes, the sender no longer has ownership of the message buffer
and must not access the buffer memory again; it is as if EMBX_Free had been called.
However, in transports that support zero-copy messages the buffer will simply have changed
ownership.

8.7.3 Sending and updating distributed objects

Changes to the contents of an object are made visible to other applications in the system by
explicitly sending an update to ports belonging to those applications. The following functions
provide the means to do this:

EMBX_ERROR EMBX_SendObject(
EMBX_PORT port,
EMBX_HANDLE handle,
EMBX_UINT offset,
EMBX_UINT size)

EMBX_ERROR EMBX_UpdateObject(
EMBX_PORT port,
EMBX_HANDLE handle,
EMBX_UINT offset,
EMBX_UINT size)

The difference between the two is that EMBX_SendObject posts an EMBX_REC_OBJECT
event to the specified port, whilst EMBX_UpdateObject does not. Both calls ensure that
the specified portion of the object is updated such that it can be read by the owner of the
receive port.

Note: If the distributed object’s memory is directly addressable by the sender then no copying
takes place which in fact means that EMBX_UpdateObject does no work at all. However,
the calls should still be made to ensure correct operation on copying transports.

The calls specify the region of the distributed object that will be updated, with an offset from
the beginning of the object’s memory and the size of the region. This allows very tight
control of the granularity of data copies if this is required.

Multicom Using the EMBX API

7574220 77/211

A region that is zero sized results in shadow storage being allocated on the destination if
required. This mechanism allows EMBX_SendObject to be used as a means for passing
write permission to an object between components without requiring the use of a control
message or copying useless data.

The intended use for EMBX_UpdateObject is to allow multiple objects to be updated,
without having a task on the receiving side having to deal with any events. Typically the
updates would be followed by a single control message or RPC operation that specifies
what to do with the now updated objects.

8.7.4 Usage example: buffer pool

An application could use the behavior of EMBX_SendMessage and EMBX_Receive to
efficiently implement buffer reuse management from a fixed size pool, see Figure 6.

Figure 6. Reusing buffers from a pre-allocated pool

Here we see a producer/consumer model, communicating with a finite number of fixed size
message buffers. Two communication ports exist: the buffer pool port, which is the source of
free buffers for the producer and the message port which is destination for messages sent to
the consumer. The buffer pool port has two active connections to it; hence, the transport
must allow multiple connections. The initialization creates a number of buffers and uses
EMBX_SendMessage to send them all to the buffer pool port. For the producer to send a
message to the consumer it must first receive an empty buffer from the buffer pool. When
the consumer has finished dealing with a message, it sends the message buffer back to the
buffer pool port, using a data size of zero so that no physical copy will happen on a copy
based transport. The rate of production of new messages is naturally regulated by the
number of buffers circulating around the system and the relative speeds of the producer and
consumer. The producer blocks if it is too fast, waiting for an empty buffer to arrive and the
consumer blocks if it is too fast waiting for a message to process.

Producer

Consumer

Message
port

Buffer
port

Initialization

Send (Message)

Send (Message)

Send (Empty Buffer)

Receive (Empty Buffer)

Send (New Buffer)

Using the EMBX API Multicom

78/211 7574220

8.8 Transport and EMBX shutdown
EMBX is shutdown by calling:

EMBX_ERROR EMBX_Deinit(void)

This:

● invalidates all open port and transport handles (see Section 8.3: Transports on page 69
and Section 8.6: Ports on page 73)

● interrupts any tasks waiting on EMBX_OpenTransport, EMBX_ConnectBlock or
EMBX_ReceiveBlock

● waits for all transport handles to be closed by the application

● shuts down all currently active transports and resets any driver structures

At this point the driver can be re-initialized with another call to EMBX_Init. In the Linux
kernel implementation this is called when a request to unload the API module has been
made by the user. If an application has been written such that EMBX_Deinit can be called,
while tasks are still using active transports, it must test the return values from API calls in
order to determine that the system has become invalid and is waiting to shutdown. When
this is detected it should release message buffers, close ports and finally close all of its
transport handles. If an application fails to close open ports and transport handles then the
call to EMBX_Deinit blocks indefinitely.

If multiple processes call EMBX_Deinit before it completes then all of them block until it
does complete or fail; in this case all of the blocked calls return the same result, whatever
that might be.

Shutting down EMBX with EMBX_Deinit does not un-register transport factories. Therefore
if EMBX_Init is called again after the driver has been shutdown the factories are called
once more and transports created. In order to clean up the copy of the factory configuration
argument, factories should be unregistered after the driver has closed using:

EMBX_ERROR EMBX_UnregisterTransport(EMBX_FACTORY handle)

Note: In a Linux kernel environment this decrements the module usage count for the API module.
Failing to un-register transport factories prevents the API module from being unloaded from
the kernel, as this can only happen if the usage count is zero.

EMBX_UnregisterTransport can also be called while EMBX is still active. The behavior
in this case depends on whether or not a transport was successfully created from the given
factory handle. If no such transport exists then the record of the factory is simply removed;
however if a transport does exist it is closed down, using the same sequence of events used
in EMBX_Deinit. Hence, like EMBX_Deinit, EMBX_UnregisterTransport can block
indefinitely waiting for the transport to be closed.

Note: In a Linux kernel environment, blocked kernel operations may get woken up due to a signal
being delivered to an associated user process. This occurs when a user process issues a
system call, to another kernel module, that then calls EMBX. In this case, if the
EMBX_Deinit or EMBX_UnregisterTransport operation has not successfully
completed it is postponed and the call returns EMBX_SYSTEM_INTERRUPT.

Multicom Transport specifics

7574220 79/211

9 Transport specifics

9.1 Introduction
Each transport within the EMBX must provide one or more factory functions to create an
instantiation of that transport. A factory function is bound to a name using
EMBX_RegisterTransport (see Section 8.2.1: Registering transport factories on
page 68). Also bound is a factory specific data structure used to configure the transport.

This chapter provides an overview of the unique features of each transport together with a
detailed description of how each transport is configured.

9.2 EMBXMailbox
EMBXMailbox is not actually a transport in its own right. In fact EMBXMailbox is simply a
utility library used by other transports with the EMBX system.

EMBXMailbox is responsible for managing the use of the hardware mailbox resources. The
hardware mailbox is a peripheral present on STMicroelectronics’ shared memory platforms;
the mailbox is used for interrupt generation and to manage mutual exclusion in the absence
of bus-locked read-modify-write operations. EMBXMailbox provides a means to allocate the
resources of the hardware mailbox as well as simple functions to manipulate resources
once they are allocated.

Whilst EMBXMailbox provides a complete API to manipulate the hardware mailboxes, most
of this API is only expected to be used by the other EMBX transports. The API is described
in Chapter 10: Function descriptions on page 87 and the main functions intended for
general use are discussed in this chapter.

The EMBXMailbox functions of general interest are as follows.

EMBX_ERROR EMBX_Mailbox_Init(void)
EMBX_ERROR EMBX_Mailbox_Register(
 void *pMailbox,
 int intNumber,
 int intLevel,
 EMBX_Mailbox_Flags_t flags)
EMBX_VOID EMBX_Mailbox_Deregister(void *pMailbox)

EMBX_Mailbox_Init is used to initialize the library and should be called before any other
library call. It takes no arguments and will only fail if there is insufficient system memory.

EMBX_Mailbox_Register is used to register a hardware mailbox with the library. Once a
mailbox has been registered, transports that make use of the hardware mailboxes will be
able to allocate resources. The mailboxes must be registered before such a transport is
initialized by either EMBX_Init or EMBX_RegisterTransport. See Section 8.2:
Initialization on page 68 for further information on when transports are initialized.

Example mailbox registrations for targeted platforms can be found in Appendix A: Transport
configurations on page 192.

Transport specifics Multicom

80/211 7574220

9.2.1 EMBXMailbox as a Linux kernel module

When EMBXMailbox is loaded as a kernel module then mailboxes can be registered using
module parameters. Up to four mailboxes can be registered using the parameters
mailbox0, mailbox1, mailbox2 and mailbox3.

The standard form for each of the parameters is:

mailbox-addr:interrupt-number:flags...

Flags can contain (in lower case) the last word of each flag listed in Table 15:
EMBX_Mailbox_Flags_t flags on page 119.

Example:

insmod embxmailbox.o mailbox0=0x66150000:112:set2:activate

9.3 EMBXSHM
EMBXSHM is a shared memory transport suited to platforms with high bandwidth memory
access.

EMBXSHM requires the following hardware support from its underlying platform:

● an area of shared memory that can be directly addressed by all participants in the
platform, this memory need not appear at the same address in each address map

● a mechanism for interrupting every other participant within the transport

EMBXSHM supports zero-copy data transfers both for messages, and for distributed objects
held in memory addressable by all participants.

EMBXSHM requires exactly one master processor and can support any number of slave
processors. The maximum number of slave processors is configured at compilation time
and the supplied binaries are configured to support no more than three slave processors.

By convention the processor that managed the boot process, for example by configuring the
memory interfaces, will be the master processor although there is nothing in the transport
that mandates this.

The master processor is responsible for initializing the shared memory and for
communicating the address of that memory to the slave processors. The master processor
may also be responsible for automatically allocating memory to share if the transport
configuration has requested this.

9.3.1 Address modes and pointer warping

While EMBXSHM’s shared memory pool must be contiguous in the processors’ memory map
there is no requirement for the pool to map to the same address on all processors because
EMBXSHM contains an in-built means to warp pointers before passing them to other
processors.

Consider for example two processors, X and Y, that possess the memory maps shown in
Figure 7: Example memory maps on page 81.

Multicom Transport specifics

7574220 81/211

Figure 7. Example memory maps

There are 8 Mbytes of shared memory mapped at different addresses on each processor.
The address of the base of the shared memory on a particular processor is called the local
base address. In this case that is 0x80000000 for processor X and 0xC0000000 for
processor Y.

In order to make it easy to calculate the values by which the pointers will be warped for
translation we introduce the concept of a bus base address. The bus base address is a
selected common value representing the memory bus view of the base of shared memory.
For multi-core devices the shared memory is typically on the system bus thus, the bus
address is typically the physical address of the shared memory. For other devices the choice
is less clear since there are multiple memory buses, in this situation the bus base address is
usually considered to be zero. In the above example we will assume that the bus base
address is zero.

The pointer warp is added to the local address to form the bus address. Thus the pointer
warp can be calculated for each processor as the local base address subtracted from the
bus base address.

Note: The pointer warp is always considered to be positive, to achieve negative conversions a
positive number is used such that the address calculation will overflow.

Thus for processor X the pointer warp is:

0x0 - 0x80000000 = -0x80000000 = 0x80000000

and for processor Y the pointer warp is:

0x0 - 0xC0000000 = -0xC0000000 = 0x40000000

9.3.2 Linking and loading

On OS21 the application must link against the EMBX shell, the mailbox library and the
shared memory transport.

Assuming the library search path is correctly set, this requires the following to be added to
the link line:

-lembxshell -lembxmailbox -lembxshm

0x80800000

0x80000000

0xC0800000

0xC0000000

Processor X
address space

Processor Y
address space

Shared memory

Transport specifics Multicom

82/211 7574220

Note: The ST40 and ST200 toolsets perform linking in a single pass. For this reason it is important
to preserve the above ordering or the application will fail to link. Similarly it is vital that the
object files appear in the link line after the above options.

In Linux kernel space the application must be linked against the same components,
however, since linking is performed automatically by the module loader this can be achieved
by loading the following modules, in order, into the kernel:

embxshell.o embxmailbox.o embxshm.o

9.3.3 The mailbox factory function

The mailbox factory function, EMBXSHM_mailbox_factory is used to manufacture
transports that use the EMBXMailbox library to interrupt other participants but have no
other specialist requirements.

Devices that should use this factory function are typically multi-core devices that share a
single address space; on these devices there is no need to expose memory to slave
devices.

Processors such as the ST40 and the ST231 running OS21 offer multiple views of memory.
It is important that pointers supplied to the factory function point to the correct view of
memory. For EMBXSHM the restrictions are as follows:

The transport configuration structure, EMBXSHM_MailboxConfig_t, is described in
Table 13 on page 83.

Table 12. Pointer types required for EMBXSHM configuration

Parameter ST40 ST231

Local address (used to calculate
pointerWarp)

P2 uncached virtual address Physical address

sharedAddr P2 uncached virtual address Uncached virtual address

warpRangeAddr P2 uncached virtual address Uncached virtual address

Multicom Transport specifics

7574220 83/211

Table 13. EMBXSHM_MailboxConfig_t structure

Name Type Description

name EMBX_CHAR [] The name of this transport.

cpuID EMBX_UINT
ID of the local processor within the transport. The
master must have a CPU identity of 0.

participants EMBX_UINT [8]

Map of processors participating in this transport. An
array element should be set to 0 if the corresponding
CPU identity does not exist, otherwise the element
should be set to 1.

pointerWarp EMBX_UINT
Correction factor used to convert a local address into a
bus address.

maxPorts EMBX_UINT
The maximum number of receive ports that can be
open at one time. Set the value to zero to permit an
unlimited number of ports.

maxObjects EMBX_UINT
The maximum number of distributed objects that can
be registered at one time.

freeListSize EMBX_UINT
The number of pre-allocated free nodes per port. This
is the maximum number of unreceived communication
events that a single port can support.

sharedAddr EMBX_VOID *
Base address of the memory pool to be managed by
EMBXSHM. For automatic allocation of the memory pool
sharedAddr should be NULL.(1)

1. If a Linux master processor is configured to automatically allocate memory for the shared heap it attempts
to allocate the memory from the bigphysarea. For such a configuration to operate correctly the following
must appear in the Linux kernel arguments:

bigphysarea=pages

where pages is the number of operating system pages to be allocated (each page is 4096 bytes in size
on the ST40/SH4). This value should be selected to ensure there is enough memory to allocate the
shared heap.

sharedSize EMBX_UINT Size of the shared memory pool in bytes.

warpRangeAddr EMBX_VOID *

The primary warp range base address. Used to specify
the memory range base address for which zero-copy
memory transfers between the CPUs are safe. See
warpRangeAddr and warpRangeSize on page 84.

warpRangeSize EMBX_UINT

Size of the primary warp range for which zero-copy
data transfer is safe. The primary warp range starts at
warpRangeRange and ends at warpRangeAddr +
warpRangeSize.

warpRangeAddr2 EMBX_VOID *

The secondary warp range base address. Used to
specify the memory range base address for which
zero-copy memory transfers between the CPUs are
safe. See warpRangeAddr2 and warpRangeSize2 on
page 85.

warpRangeSize2 EMBX_UINT

Size of the secondary warp range for which zero-copy
data transfer is safe. The primary warp range starts at
warpRangeRange2 and ends at warpRangeAddr2 +
warpRangeSize2.

Transport specifics Multicom

84/211 7574220

When configuring CPU 0 (the master processor) all members of the configuration structure
must be used. However, for the slave processor all members that are grayed out in Table 13,
should be omitted, their values will be automatically derived from the master processor
configuration.

The following code shows how to register a transport using this factory function.

EMBX_MailboxConfig_t config = {
/* ... */

};
EMBX_FACTORY hFactory;

err = EMBX_RegisterTransport(
EMBXSHM_mailbox_factory, &config, sizeof(config),
&hFactory);

See Appendix A: Transport configurations on page 192 for example configuration structures
for all targeted platforms supported by the this factory function. This also shows how to
configure the transport using Linux kernel module arguments.

warpRangeAddr and warpRangeSize

If warpRangeAddr and warpRangeSize are set to zero their values are automatically
determined from the values used for sharedAddr and sharedSize.

By setting warpRangeAddr and warpRangeSize the range of addresses can be
extended, for which EMBX does not duplicate data when transferring it from one processor
to another (zero-copy). This is only possible when both processors are capable of directly
addressing data held in shared memory.

Note: Multi-core devices typically share a single STBus, the effect of this is that all memory is
shared. This allows very large warp ranges to be used.

By setting these members, an application is asserting not only that it is possible to zero-copy
data that falls within that address range but also that it is safe. It is therefore the application's
responsibility to ensure that it really is safe to zero-copy pointers in that range. The following
steps are required to be safe:

1. The extended warp range must entirely enclose the shared memory pool. If
sharedAddr is NULL then the shared memory pool is allocated automatically. Thus
for OS21 based systems the warp range must cover the host's entire C library heap,
and for Linux based systems it must cover the entire bigphysarea.

2. The pointerWarp value must be correct for the entire span of the extended warp
range. This typically requires the address space described to be physically contiguous
on both the host and any companion processors.

3. Additionally on ST231 processors it is the application/bootstrap writer's responsibility to
ensure speculation is enabled to all RAM addresses within the range described on both
host and companion processors.

Host 32-bit space enhanced mode support

The R3.2 release of Multicom is the first to support the ST40 host running in 32-bit space
enhanced (SE) mode. In this mode the ST40 no longer has a simple mapping from local
addresses to physical (bus) ones (that is the P1/P2 mappings in 29-bit mode).

Hence it is not possible to use the EMBXSHM pointer warping mechanism in the same way.
To address this issue, Multicom 3.2 and later have modified the EMBXSHM Warp range
specification to use physical (bus) addresses instead of local ones. This change also means

Multicom Transport specifics

7574220 85/211

that the pointerWarp calculation is no longer necessary and that parameter can be set to
0.

warpRangeAddr2 and warpRangeSize2

On platforms where there are two disjoint physical memory regions (LMI banks) it may not
be possible to specify a single warp range which spans both. Hence the EMBXSHM
configuration has been extended to include a secondary warp range specification, with the
original warp range now being referred to as the primary one.

This secondary warp range behaves like the primary one in that memory between
warpRangeAddr2 and warpRangeAddr2 + warpRangeSize2 is assumed to be safe for
zero-copy data transfers.

In the situation where a secondary warp range is required, a primary warp range must
always be specified and it must still span the shared memory pool as before. It does not
matter if the secondary address warpRangeAddr2 is lower than that of the primary
address warpRangeAddr.

If no secondary warp range is required then set the warpRangeSize2 parameter to 0.

9.4 EMBXSHMC
EMBXSHMC is a variant of the EMBXSHM transport which allows its main memory pool to
be cached. Its configuration and setup is identical to that of EMBXSHM, see Section 9.3:
EMBXSHM on page 80.

EMBXSHMC performs extensive cache flushes during its operation, for this reason it takes
much longer to transfer data which significantly affects latency. However, in some cases the
use of the cache improves communication bandwidth since the application’s read and write
operations to data buffers, often run significantly faster.

The choice of EMBXSHM versus EMBXSHMC should be made on an application by
application basis and largely depends on how intensively the application uses allocated
memory.

Note: EMBXSHM and EMBXSHMC are wire-compatible making it possible for some processors
within the system to run EMBXSHM and some EMBXSHMC. For example some MME
configurations are well suited to running EMBXSHM on the host processor and
EMBXSHMC on each companion processor.

9.4.1 The mailbox factory function

Processors such as the ST40 and the ST231 running OS21 offer multiple views of memory.
It is important that pointers supplied to the factory function point to the correct view of
memory. For EMBXSHMC the restrictions are given in Table 14.

Table 14. Pointer types required for EMBXSHMC configuration

Parameter ST40 ST231

Local address (used to calculate
pointerWarp)

P1 cached virtual address Physical address

sharedAddr P1 cached virtual address Cached virtual address

warpRangeAddr P1 cached virtual address Cached virtual address

Part 5 Functions, types and macros Multicom

86/211 7574220

Part 5 Functions, types and macros

Functions, types and macros covers:

● EMBX functions

● MME functions and macros

● MME constants, enums and types

Multicom Function descriptions

7574220 87/211

10 Function descriptions

10.1 EMBX functions

EMBX_Address
Definition: #include <embx.h>

EMBX_ERROR EMBX_Address(EMBX_TRANSPORT tp,
 EMBX_INT offset,
 EMBX_VOID **address)

Arguments:

Returns:

Description: Convert an opaque value, representing a memory address within the given
transport’s memory pool, into a memory pointer suitable for the caller’s CPU and OS
environment.

This call may not be supported on all transport types, which is indicated by the
allowsPointerTranslation field in the transport information structure.

Comments: See also: EMBX_Offset

tp Specifies the transport that should be used for
translating the value.

offset Specifies the value to be translated.

address Specifies a pointer to the pointer that will initialized
with the translated address.

EMBX_INVALID_TRANSPORT The given transport handle was invalid or the
transport does not support the operation.

EMBX_INVALID_ARGUMENT The offset could not be translated in the context of the
given transport.

EMBX_INCOHERENT_MEMORY The offset was successfully translated and maps to
an incoherent memory address.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

88/211 7574220

EMBX_Alloc
Definition: #include <embx.h>

EMBX_ERROR EMBX_Alloc(EMBX_TRANSPORT tp,
EMBX_UINT size,
EMBX_VOID **buffer)

Arguments:

Returns:

Description: Allocate a memory buffer, large enough to hold the given size in bytes, from the pool
for a particular transport.

Comments: See also: EMBX_Free

EMBX_GetBufferSize

tp Specifies the transport that is allocated from..

size Specifies the number of bytes to allocate.

buffer Specifies a pointer to the pointer to be initialized with
the allocated memory address.

EMBX_INVALID_TRANSPORT The given transport handle was invalid.

EMBX_INVALID_ARGUMENT The buffer pointer invalid.

EMBX_NOMEM Insufficient memory was available.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 89/211

EMBX_ClosePort
Definition: #include <embx.h>

EMBX_ERROR EMBX_ClosePort(EMBX_PORT port)

Arguments:

Returns:

Description: Close a handle to a communication port that has been obtained from one of
EMBX_CreatePort, EMBX_Connect or EMBX_ConnectBlock.

Closing a port handle, obtained from EMBX_CreatePort:

– unbinds a name from the port, if one is currently bound

– signals any remote connections to the port that it is closing and wait until they
signal back that they have invalidated their references to the port

– signals any tasks waiting on this port using EMBX_ReceiveBlock that it is
closing and waits for the interrupted calls to signal back that they have finished
with the port

– releases all pending message buffers on the port

– releases any internal data structures related to the port and port handle

Note: Although the call will interrupt tasks still blocked on the port, this is an indication of a
poorly written application. If an application has such tasks, which need to be cleanly
shutdown so that they do not use the port handle after it has closed, it should first call
EMBX_InvalidatePort. It can then call EMBX_ClosePort once all of the tasks
have reached a point where it is guaranteed they will not use the port handle again.

– closing a port handle obtained from one of the “Connect” calls

– releases any internal data structures related to the port handle

– reduces the connection count on the target port by one

Comments: See also: EMBX_Connect

EMBX_ConnectBlock

EMBX_CreatePort

EMBX_InvalidatePort

EMBX_ReceiveBlock

port Specifies the port handle to close.

EMBX_INVALID_PORT The given port handle was invalid.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

90/211 7574220

EMBX_CloseTransport
Definition: #include <embx.h>

EMBX_ERROR EMBX_CloseTransport(EMBX_TRANSPORT tp)

Arguments:

Returns:

Description: Closes a handle to a transport. This will only succeed if there are no open port
handles left that have been created, using the handle to be closed. If any other tasks
are waiting on the transport handle with EMBX_ConnectBlock then they will be
signaled that the handle is closing and the resources associated with the handle will
be released. At this point any further use of the handle will result in undefined
behavior.

Comments: See also: EMBX_ClosePort

EMBX_ConnectBlock

EMBX_OpenTransport

tp Specifies the transport handle to close.

EMBX_INVALID_TRANSPORT The given transport handle was invalid.

EMBX_PORTS_STILL_OPEN The given transport handle still has open ports.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 91/211

EMBX_Connect
Definition: #include <embx.h>

EMBX_ERROR EMBX_Connect(EMBX_TRANSPORT tp,
EMBX_CHAR *portName,
EMBX_PORT *port)

Arguments:

Returns:

Description: This call attempts to make a connection to a port bound to the provided name in the
specified transport. If the port does not exist then the call fails, returning
EMBX_PORT_NOT_BIND. If the port has an existing connection and was created,
allowing only single connections, then this call will fail and return
EMBX_CONNECTION_REFUSED. The returned port handle can be used to send
messages or objects to the destination port using subsequent calls to
EMBX_SendMessage, EMBX_SendObject and EMBX_UpdateObject.

Comments: See also: EMBX_ClosePort

EMBX_CreatePort

EMBX_OpenTransport

EMBX_SendMessage

EMBX_SendObject

EMBX_UpdateObject

tp Specifies the transport that is the target for the
connection.

portName Specifies the name of the port to connect to.

port Specifies a pointer to the port handle to be initialized.

EMBX_INVALID_TRANSPORT The given transport handle was invalid.

EMBX_INVALID_ARGUMENT The port name or port pointer was invalid or the port
name exceeded EMBX_MAX_PORT_NAME characters.

EMBX_PORT_NOT_BIND The given port name does not exist.

EMBX_CONNECTION_REFUSEDThe port refused the connection request.

EMBX_NOMEM Insufficient memory was available for internal
structures.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

92/211 7574220

EMBX_ConnectBlock
Definition: #include <embx.h>

EMBX_ERROR EMBX_ConnectBlock(EMBX_TRANSPORT tp,
EMBX_CHAR *portName,
EMBX_PORT *port)

Arguments:

Returns:

Description: This call attempts to make a connection to a port bound to the provided name in the
specified transport. If the port does not exist then the call blocks until the name has
been bound; hence, this call may never return. If the port already exists and has an
existing connection, but only supports a single connection model, then this call will fail
and return EMBX_CONNECTION_REFUSED. If more than one process is blocked on
the same port name and the transport only supports single connection ports, then
when the port with the given name is created the following happens:

1. one connection request is picked, a connection is made and the blocked task is
woken up

2. the tasks blocked on the remaining connection requests are woken up and will return
EMBX_CONNECTION_REFUSED

If the transport handle is closed by another task calling EMBX_CloseTransport,
while the call is blocked, the blocked task will be woken up and the call will return
EMBX_TRANSPORT_CLOSED. If the driver invalidates the transport handle, due to a
call to EMBX_Deinit or some transport specific event while the call is blocked, the
task will be woken up and the call will return EMBX_TRANSPORT_INVALIDATED.

tp Specifies the transport that is the target for the
connection.

portName Specifies the name of the port to connect to.

port Specifies a pointer to the port handle to be
initialized.

EMBX_INVALID_TRANSPORT The given transport handle was invalid

EMBX_INVALID_ARGUMENT The port name or port pointer was invalid or the
port name exceeded EMBX_MAX_PORT_NAME
characters.

EMBX_TRANSPORT_CLOSED The transport handle was closed while the call
was blocked.

EMBX_TRANSPORT_INVALIDATEDThe transport handle was invalidated while the
call was blocked.

EMBX_CONNECTION_REFUSED The port refused the connection request.

EMBX_NOMEM Insufficient memory was available for internal
structures.

EMBX_SYSTEM_INTERRUPT The call was interrupted by the OS before a
connection was made.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 93/211

In the later case the application is still required to call EMBX_CloseTransport to
clean up the transport’s resources.

In a Linux kernel environment if a user process associated with this operation
(through a system call) receives a signal while it is blocked then the call will return
EMBX_SYSTEM_INTERRUPT.

The returned port handle can be used to send messages or objects to the destination
port using subsequent calls to EMBX_SendMessage, EMBX_SendObject and
EMBX_UpdateObject.

Comments: See also: EMBX_ClosePort

EMBX_CloseTransport

EMBX_CreatePort

EMBX_Deinit

EMBX_OpenTransport

EMBX_SendMessage

EMBX_SendObject

EMBX_UpdateObject

Function descriptions Multicom

94/211 7574220

EMBX_CreatePort
Definition: #include <embx.h>

EMBX_ERROR EMBX_CreatePort(EMBX_TRANSPORT tp,
EMBX_CHAR *name,
EMBX_PORT *port)

Arguments:

Returns:

Description: Creates a new named port on the given transport, returning a port handle for use in
subsequent API calls to receive message and object events. The port name can be
up to EMBX_MAX_PORT_NAME characters in length. The given port name must not
already be in use in the specified transport, if it is the call will fail and return
EMBX_ALREADY_BIND.

This call may fail if the maximum number of ports on the transport has already been
reached.

Comments: See also: EMBX_ClosePort

EMBX_Receive

EMBX_ReceiveBlock

tp Specifies the transport to create the port on.

name Specifies the name of the port.

port Specifies a pointer to the port handle to be initialized.

EMBX_INVALID_TRANSPORT The transport is invalid.

EMBX_INVALID_ARGUMENT The port name or port pointer is invalid or the port
name is too long.

EMBX_ALREADY_BIND The port name is already in use in this transport.

EMBX_NOMEM There were insufficient resources available to create
the new port.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 95/211

EMBX_Deinit
Definition: #include <embx.h>

EMBX_ERROR EMBX_Deinit(void)

Arguments: None.

Returns:

Description: This call de-initializes the driver by doing the following actions:

– invalidate all port and transport handles;

– interrupt any tasks waiting on EMBX_OpenTransport, EMBX_ConnectBlock
or EMBX_ReceiveBlock

– wait for all transport handles to be closed by the application

– close down the currently active transports and reset any driver structures

Once shutdown, the driver will be in a state where it is possible to unload it from the
system or restart the software with another call to EMBX_Init. This call does not
unregister transport factories registered using EMBX_RegisterTransport.

While this call causes all of the driver’s transports to shutdown, which will have
varying effects on other processors in the system dependent on the transport
implementations, it does NOT cause the EMBX driver running on those processors to
shutdown as well.

Comments: See also: EMBX_CloseTransport

EMBX_Init

EMBX_DRIVER_NOT_INITIALIZED The driver is not initialized.

EMBX_SYSTEM_ERROR An unexpected system error prevented
the driver closing down.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

96/211 7574220

EMBX_DeregisterObject
Definition: #include <embx.h>

EMBX_ERROR EMBX_DeregisterObject(EMBX_TRANSPORT tp,
EMBX_HANDLE handle)

Arguments:

Returns:

Description: Deregister the given object handle from the specified transport; this can only be
called successfully on the CPU that registered the object in the first place. If any other
CPUs connected to the transport have local copies of the object, these will be freed.

Deregistering an object handle has no physical effect on the object’s memory on the
owning CPU, nor does it affect any other registered handles for the same memory in
either the transport specified or in other transports in the system.

Note: If the object handle to be deregistered has previously been sent to a port using
EMBX_SendObject but that event has not yet been received, the driver does not
attempt to stop a future receive from succeeding. Accessing a handle from
EMBX_REC_OBJECT event when that handle has been deregistered is undefined. It is
the responsibility of all applications in the system to co-operate and correctly manage
the lifetime of and access to objects.

Comments: See also: EMBX_RegisterObject

tp Specifies the transport the object handle is registered
in.

handle Specifies the object handle to deregister.

EMBX_INVALID_TRANSPORT The transport handle is invalid.

EMBX_INVALID_ARGUMENT The object handle is invalid or was not registered on
this CPU.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 97/211

EMBX_FindTransport
Definition: #include <embx.h>

EMBX_ERROR EMBX_FindTransport(EMBX_CHAR *name,
EMBX_TPINFO *tpinfo)

Arguments:

Returns:

Description: Return a transport information structure for the named transport, if it exists, see
Section 8.3.1: Querying transports on page 69.

Comments: See also: EMBX_GetFirstTransport

EMBX_GetNextTransport

name Specifies the name of the transport required.

tpinfo Specifies a pointer to the structure to be
initialized.

EMBX_DRIVER_NOT_INITIALIZED The driver is not initialized.

EMBX_INVALID_TRANSPORT The transport name was not found.

EMBX_INVALID_ARGUMENT An argument was an invalid pointer.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

98/211 7574220

EMBX_Free
Definition: #include <embx.h>

EMBX_ERROR EMBX_Free(EMBX_VOID *buffer)

Arguments:

Returns:

Description: Free a buffer that has been obtained either from a call to EMBX_Alloc,
EMBX_Receive or EMBX_ReceiveBlock. The transport and hence the memory
pool, that the buffer belongs to, is deduced from the given pointer. The call will fail if
the pointer cannot be associated with a valid buffer and transport.

Comments: See also: EMBX_Alloc

EMBX_Receive

EMBX_ReceiveBlock

buffer Specifies the memory buffer to be released.

EMBX_INVALID_ARGUMENT The buffer pointer is invalid.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 99/211

EMBX_GetBufferSize
Definition: #include <embx.h>

EMBX_ERROR EMBX_GetBufferSize(EMBX_VOID *buffer,
EMBX_UINT *size)

Arguments:

Returns:

Description: Return the actual size of the given buffer pointer, which must have been obtained
from EMBX_Alloc, EMBX_Receive or EMBX_ReceiveBlock.

Note: The actual size of the buffer may not be exactly the size requested from EMBX_Alloc
since the transport may have internally rounded up the requested size.

Comments: See also: EMBX_Alloc

EMBX_Receive

EMBX_ReceiveBlock

buffer Specifies a pointer to the buffer whose size is
required.

size Specifies a pointer to the size variable to be
initialized.

EMBX_INVALID_ARGUMENT The buffer or size pointer is not valid.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

100/211 7574220

EMBX_GetFirstTransport
Definition: #include <embx.h>

EMBX_ERROR EMBX_GetFirstTransport(EMBX_TPINFO *tpinfo)

Arguments:

Returns:

Description: Return a transport information structure for the first transport in the driver’s internal
list. The rest of the transports can be retrieved by successive calls to
EMBX_GetNextTransport, see Section 8.3.1: Querying transports on page 69.

Comments: See also: EMBX_FindTransport

EMBX_GetNextTransport

tpinfo Specifies a pointer to the structure to be
initialized.

EMBX_DRIVER_NOT_INITIALIZED The driver is not initialized.

EMBX_INVALID_STATUS No transports are available.

EMBX_INVALID_ARGUMENT The info pointer is invalid.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 101/211

EMBX_GetNextTransport
Definition: #include <embx.h>

EMBX_ERROR EMBX_GetNextTransport(EMBX_TPINFO *tpinfo)

Arguments:

Returns:

Description: Return a transport information structure for the next transport in the driver’s internal
list. The transport information structure pointed to by tpinfo must contain the
transport description as returned by either EMBX_GetFirstTransport or a
previous call to EMBX_GetNextTransport, see Section 8.3.1: Querying transports
on page 69.

Comments: See also: EMBX_FindTransport

EMBX_GetFirstTransport

tpinfo
Specifies a pointer to the last transport entry and to
the structure to be initialized.

EMBX_DRIVER_NOT_INITIALIZED The driver is not initialized.

EMBX_INVALID_ARGUMENT
The pointed to structure does not contain
a valid transport descriptor.

EMBX_INVALID_STATUS There are no more transports in the list.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

102/211 7574220

EMBX_GetObject
Definition: #include <embx.h>

EMBX_ERROR EMBX_GetObject(EMBX_TRANSPORT tp,
EMBX_HANDLE handle,
EMBX_VOID **object,
EMBX_UINT *size)

Arguments:

Returns:

Description: Return a valid machine pointer and size, for the representation on the calling CPU, of
the object identified by the given handle. If there is currently no physical
representation of this object on this CPU then storage will be allocated, which may fail
with EMBX_NOMEM.

Comments: See also: EMBX_RegisterObject

tp Specifies the transport which the handle is registered
in.

handle Specifies the object handle to query.

object Specifies the object memory pointer variable to be
initialized.

size Specifies the object size variable to be initialized.

EMBX_INVALID_TRANSPORT The transport handle is invalid.

EMBX_INVALID_ARGUMENT The object handle or return value pointers are invalid.

EMBX_NOMEM Unable to allocate new storage for the object on this
CPU.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 103/211

EMBX_GetTransportInfo
Definition: #include <embx.h>

EMBX_ERROR EMBX_GetTransportInfo(EMBX_TRANSPORT tp,
EMBX_TPINFO *tpinfo)

Arguments:

Returns:

Description: Return a transport information structure for the transport referenced by the given
handle, see Section 8.3.1: Querying transports on page 69.

Comments: See also: EMBX_OpenTransport

tp Specifies the transport whose information structure is
required.

tpinfo Specifies a pointer to the structure to be initialized.

EMBX_INVALID_TRANSPORT The transport handle was invalid.

EMBX_INVALID_ARGUMENT The transport info pointer was invalid.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

104/211 7574220

EMBX_Init
Definition: #include <embx.h>

EMBX_ERROR EMBX_Init()

Arguments: None.

Returns:

Description: If the EMBX driver is not initialized this call will:

– create resources global to the EMBX environment, if not already done

– call each currently registered transport factory function, with its associated
argument, to attempt to create a transport instantiation

It is valid for no transports to be registered and therefore for no transports to be
created by any registered factories.

Comments: See also: EMBX_Deinit

EMBX_RegisterTransport

EMBX_ALREADY_INITIALIZED The driver is already initialized.

EMBX_SYSTEM_ERROR An unrecoverable error occurred while initializing
the driver.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 105/211

EMBX_InvalidatePort
Definition: #include <embx.h>

EMBX_ERROR EMBX_InvalidatePort(EMBX_PORT port)

Arguments:

Returns:

Description: Invalidate a communication port, using the handle that was returned from
EMBX_CreatePort. Attempting to invalidate a port handle returned from
EMBX_Connect or EMBX_ConnectBlock will fail returning EMBX_INVALID_PORT.

This call will:

– unbind the name from the port, if one exists

– signal any remote connections to the port that it is being invalidated and wait
until they signal back that they have invalidated their references to the port

– signal any tasks waiting on this port using EMBX_ReceiveBlock that it is
invalidated and waits for the interrupted calls to signal back that they have
finished with the port

The port handle must still be closed at some later point by the application, using
EMBX_ClosePort, before the transport can be closed or the driver shut down. Once
the port has been invalidated any use of the port handle, except for
EMBX_ClosePort, will result in EMBX_INVALID_PORT being returned.

Comments: See also: EMBX_ClosePort

EMBX_CreatePort

EMBX_ReceiveBlock

port Specifies the port handle to invalidate.

EMBX_INVALID_PORT The given port handle was invalid.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

106/211 7574220

EMBX_Mailbox_Alloc
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_Alloc(
void (*handler)(void *),
void *param,
EMBX_Mailbox_t **pMailbox)

Arguments:

Returns:

Description: Allocate a matched status/enable pair from the hardware mailbox. This pair will be
suitable for generating interrupts on the local processor and will have the supplied
interrupt handler attached to it. After allocation both the status and the enable will be
set to zero.

Note: This function makes callbacks from interrupt context. The supplied handler must
comply with the operating system dependant restrictions on calls running from an
interrupt handler.

Comments: See also: EMBX_Mailbox_Free

handler Specifies the function that will be called back when
an interrupt is generated for the allocated mailbox.

param Contains an arbitrary data pointer that will be passed
to the callback handler.

pMailbox Points to the mailbox handle where the allocated
mailbox will be stored.

EMBX_NOMEM The were no free status/enable pairs.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 107/211

EMBX_Mailbox_AllocLock
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_AllocLock(EMBX_MailboxLock_t **pLock)

Arguments:

Returns:

Description: Allocate a LOCK register from the hardware mailbox. This lock can be used to
implement mutual exclusion between every processor that can address the mailbox.
After allocation the lock will be unset.

Note: For a shared lock only one processor should allocate the lock. All other processors
should be passed a description of the lock using a shared handle obtained through
EMBX_Mailbox_GetSharedHandle.

Comments: See also: EMBX_Mailbox_FreeLock

pLock Points to the lock handle where the allocated lock will
be stored.

EMBX_NOMEM The were no free status/enable pairs.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

108/211 7574220

EMBX_Mailbox_Deregister
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_Deregister(void *pMailbox)

Arguments:

Returns: None.

Description: Deregister a hardware mailbox. This function will reclaim all local allocated resources
associated with a mailbox. It will immediately invalidate all resources allocated from
this mailbox, the application must release these before calling this function.

Comments: See also: EMBX_Mailbox_Free

pMailbox Pointer to the base address of the hardware mailbox
being deregistered.

Multicom Function descriptions

7574220 109/211

EMBX_Mailbox_Free
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_Alloc(EMBX_Mailbox_t *mailbox)

Arguments:

Returns: None.

Description: Deallocates a local mailbox pair, allocated by EMBX_Mailbox_Alloc, or remote
mailbox pair obtained from EMBX_Mailbox_Synchronize. This will free any
associated memory and, for local mailboxes, will desensitize the mailbox to interrupts.

Comments: See also: EMBX_Mailbox_Alloc

mailbox The mailbox handle to be deallocated.

Function descriptions Multicom

110/211 7574220

EMBX_Mailbox_FreeLock
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_AllocLock(EMBX_MailboxLock_t *lock)

Arguments:

Returns: None.

Description: Deallocate a LOCK register, allocated by EMBX_Mailbox_AllocLock. This will free
any associated memory.

Note: Do not free locks obtained by EMBX_Mailbox_GetLockFromHandle. These locks
should be freed on the processor that allocated them.

Comments: See also: EMBX_Mailbox_AllocLock

lock The lock handle to be deallocated.

Multicom Function descriptions

7574220 111/211

EMBX_Mailbox_GetLockFromHandle
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_GetLockFromHandle(
EMBX_UINT handle,
EMBX_MailboxLock_t **pLock)

Arguments:

Returns:

Description: Convert an opaque handle, obtained from EMBX_Mailbox_GetSharedHandle,
into a locally available lock handle. This is used by a remote processor to identify a
shared lock.

Comments: See also: EMBX_Mailbox_GetSharedHandle

handle The opaque handle.

pLock Points to the lock handle where the allocated lock will
be stored.

EMBX_INVALID_ARGUMENT The lock handle is not valid.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

112/211 7574220

EMBX_Mailbox_GetSharedHandle
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_GetSharedHandle(
EMBX_MailboxLock_t *lock,
EMBX_UINT pHandle)

Arguments:

Returns:

Description: Convert an locally allocated lock handle into an opaque handle that can be passed to
other processors.

This function is used to inform other processor which LOCK register a processor has
allocated to provide mutual exclusion protection. The opaque handle can be passed
between all processors in the system and uniquely identifies a specific lock register.
This opaque handle can be converted back into a local handle using
EMBX_Mailbox_GetLockFromHandle.

Comments: See also: EMBX_Mailbox_GetLockFromHandle

lock The handle of the lock to make opaque.

pHandle Points to the location where the shared handle will be
stored.

EMBX_INVALID_ARGUMENT The lock handle is not valid.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 113/211

EMBX_Mailbox_Init
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_Init(void)

Arguments: None.

Returns:

Description: Initialize the hardware mailbox support library. This will allocate any software
resources required to manage the hardware.

Note: This function is not thread-safe since it is responsible for allocating thread-safety
resources.

EMBX_ALREADY_INITIALIZED The hardware mailbox support has already
been initialized.

EMBX_NOMEM There was not enough free memory to
complete this operation.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

114/211 7574220

EMBX_Mailbox_InterruptClear
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_InterruptClear(
EMBX_Mailbox_t *mailbox,
EMBX_UINT bit)

Arguments:

Returns: None.

Description: Clear a particular bit within the mailbox pairs STATUS register clearing any interrupt
associated with that bit.

Comments: See also: EMBX_Mailbox_InterruptDisable

EMBX_Mailbox_InterruptEnable

EMBX_Mailbox_InterruptRaise

EMBX_Mailbox_StatusGet

EMBX_Mailbox_StatusMask

EMBX_Mailbox_StatusSet

mailbox Handle for the enable/status pair the be cleared.

bit Bit to be cleared (0-31).

Multicom Function descriptions

7574220 115/211

EMBX_Mailbox_InterruptDisable
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_InterruptDiable(
EMBX_Mailbox_t *mailbox,
EMBX_UINT bit)

Arguments:

Returns: None.

Description: Clear a particular bit within the mailbox pairs ENABLE register disabling any interrupt
associated with that bit.

Comments: See also: EMBX_Mailbox_InterruptClear

EMBX_Mailbox_InterruptEnable

EMBX_Mailbox_InterruptRaise

EMBX_Mailbox_StatusGet

EMBX_Mailbox_StatusMask

EMBX_Mailbox_StatusSet

mailbox Handle for the enable/status pair the be cleared.

bit Bit to be cleared (0-31).

Function descriptions Multicom

116/211 7574220

EMBX_Mailbox_InterruptEnable
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_InterruptEnable(
EMBX_Mailbox_t *mailbox,
EMBX_UINT bit)

Arguments:

Returns: None.

Description: Set a particular bit within the mailbox pairs ENABLE register enabling any interrupt
associated with that bit.

Comments: See also: EMBX_Mailbox_InterruptClear

EMBX_Mailbox_InterruptDisable

EMBX_Mailbox_InterruptRaise

EMBX_Mailbox_StatusGet

EMBX_Mailbox_StatusMask

EMBX_Mailbox_StatusSet

mailbox Handle for the enable/status pair the be set.

bit Bit to be set (0-31).

Multicom Function descriptions

7574220 117/211

EMBX_Mailbox_InterruptRaise
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_InterruptRaise(
EMBX_Mailbox_t *mailbox,
EMBX_UINT bit)

Arguments:

Returns: None.

Description: Set a particular bit within the mailbox pairs STATUS register asserting any interrupt
associated with that bit.

Comments: See also: EMBX_Mailbox_InterruptClear

EMBX_Mailbox_InterruptDisable

EMBX_Mailbox_InterruptEnable

EMBX_Mailbox_StatusGet

EMBX_Mailbox_StatusMask

EMBX_Mailbox_StatusSet

mailbox Handle for the enable/status pair the be set.

bit Bit to be set (0-31).

Function descriptions Multicom

118/211 7574220

EMBX_Mailbox_Register
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_Register(
void *pMailbox,
int intNumber,
int intLevel,
EMBX_Mailbox_Flags_t flags)

Arguments:

Returns:

Description: Register a hardware mailbox. This function is used to register both local mailboxes
(those that can generate interrupts on the local processor) and remote mailboxes that
cannot.

It is possible to register a passive mailbox. A passive mailbox will not be addressed by
the mailbox driver until that mailbox sends an interrupt to the driver. This is used to
register mailboxes that need to be exposed by a partner device before they can be
addressed. Typically when a processor registers a passive mailbox the same mailbox
is registered as active on the processor that exposes it. An active mailbox is
automatically set to generate an interrupt and wake up the passive partners.

pMailbox Pointer to the base address of the hardware mailbox
being registered.

intNumber Interrupt identifier of the interrupt that this mailbox
can generate on the local processor, or -1 if this
mailbox cannot generate interrupts on this processor.

intLevel The interrupt level to attach the mailbox interrupt to,
or -1 if this is not applicable, either because the
operating system does not support interrupt levels or
because the mailbox cannot generate interrupts on
this processor.

flags These flags control the way the mailbox is registered.
They are used to select active or passive mode, to
specify whether the mailbox support hardware mutual
exclusion, and to choose which set of registers, if any,
is suitable for generating interrupts.

EMBX_INVALID_ARGUMENT The supplied interrupt configuration could not be
satisfied by the operating system.

EMBX_NOMEM There was insufficient system memory to register the
mailbox.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 119/211

Comments: See also: EMBX_Mailbox_Deregister

Table 15.EMBX_Mailbox_Flags_t flags

Flag Description

EMBX_MAILBOX_FLAGS_SET1
Local mailbox interrupts by using the first hardware
register set.

EMBX_MAILBOX_FLAGS_ST40,
EMBX_MAILBOX_FLAGS_SET2

Local mailbox interrupts by using the second
hardware register set.

EMBX_MAILBOX_FLAGS_PASSIVE
Do not address this mailbox until it generates an
interrupt.

EMBX_MAILBOX_FLAGS_ACTIVATE Wake up the passive partners of the mailbox.

Function descriptions Multicom

120/211 7574220

EMBX_Mailbox_ReleaseLock
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_ReleaseLock(EMBX_MailboxLock_t *lock)

Arguments:

Returns: None.

Description: Leave a region of mutual exclusion protected by the lock handle. This should only be
called by the processor that owns the lock.

Comments: See also: EMBX_Mailbox_TakeLock

lock The handle of the lock to release.

Multicom Function descriptions

7574220 121/211

EMBX_Mailbox_StatusGet
Definition: #include <embxmailbox.h>

EMBX_UINT EMBX_Mailbox_StatusGet(EMBX_Mailbox_t *mailbox)

Arguments:

Returns: The value of the STATUS register.

Description: Obtain the value of the 32-bit STATUS register.

This function is typically used during bootup to pass data values through the mailbox
registers.

Comments: See also: EMBX_Mailbox_InterruptClear

EMBX_Mailbox_InterruptDisable

EMBX_Mailbox_InterruptEnable

EMBX_Mailbox_InterruptRaise

EMBX_Mailbox_StatusMask

EMBX_Mailbox_StatusSet

mailbox Handle for the enable/status pair.

Function descriptions Multicom

122/211 7574220

EMBX_Mailbox_StatusMask
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_StatusMask(
EMBX_Mailbox_t *mailbox,
EMBX_UINT set,
EMBX_UINT clear)

Arguments:

Returns: None.

Description: Apply a pair of mask values to the 32-bit STATUS register.

This function is typically used during bootup to pass data values through the mailbox
registers.

Comments: See also: EMBX_Mailbox_InterruptClear

EMBX_Mailbox_InterruptDisable

EMBX_Mailbox_InterruptEnable

EMBX_Mailbox_InterruptRaise

EMBX_Mailbox_StatusGet

EMBX_Mailbox_StatusSet

mailbox Handle for the enable/status pair.

set Mask of bits to be set.

clear Mask of bits to be cleared.

Multicom Function descriptions

7574220 123/211

EMBX_Mailbox_StatusSet
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_StatusSet(
EMBX_Mailbox_t *mailbox,
EMBX_UINT value)

Arguments:

Returns: None.

Description: Set the value of the 32-bit STATUS register.

This function is typically used during bootup to pass data values through the mailbox
registers.

Comments: See also: EMBX_Mailbox_InterruptClear

EMBX_Mailbox_InterruptDisable

EMBX_Mailbox_InterruptEnable

EMBX_Mailbox_InterruptRaise

EMBX_Mailbox_StatusGet

EMBX_Mailbox_StatusMask

mailbox Handle for the enable/status pair.

value The value to be copied into the STATUS register.

Function descriptions Multicom

124/211 7574220

EMBX_Mailbox_Synchronize
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_Synchronize(
EMBX_Mailbox_t *local,
EMBX_UINT token,
EMBX_Mailbox_t **pRemote)

Arguments:

Returns:

Description: Exchange a token with a remote mailbox.

This function is used by the transports to establish a logical connection between
mailbox registers. The function works by examining the hardware mailbox for another
processor wishing to synchronize with the same token.

If there is no processor currently advertising that token then this function will block
until such a processor becomes available.

When such a processor is found then the remote processor will be supplied with a
handle to the caller’s local mailbox while the caller receives a handle to the mailbox of
the other processor.

Comments: See also: EMBX_Mailbox_Alloc

EMBX_Mailbox_Free

local Mailbox pair where the token request should be
advertised.

token The token to be exchanged with a remote partner.

pRemote Points to the mailbox handle where the remote
mailbox will be stored.

EMBX_NOMEM The were not sufficient system memory to register
the mailbox.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 125/211

EMBX_Mailbox_TakeLock
Definition: #include <embxmailbox.h>

EMBX_VOID EMBX_Mailbox_TakeLock(EMBX_MailboxLock_t *lock)

Arguments:

Returns: None.

Description: Enter a region of mutual exclusion protected by the lock handle. Once this function
returns no other calls to this function will complete until
EMBX_Mailbox_ReleaseLock is called.

Note: Due to the multi-processor nature of the lock this function will busy wait consuming all
available local processor cycles until the lock is available. For this reason the lock
should be held for as short a time as possible

Note: Contention for the lock within a single processor should itself be protected by a
normal operating system primitive to minimize unnecessary busy waiting.

Comments: See also: EMBX_Mailbox_ReleaseLock

lock The handle of the lock to wait for.

Function descriptions Multicom

126/211 7574220

EMBX_Mailbox_UpdateInterruptHandler
Definition: #include <embxmailbox.h>

EMBX_ERROR EMBX_Mailbox_UpdateInterruptHandler(
EMBX_Mailbox_t *mailbox,
void (*handler)(void *),
void *param)

Arguments:

Returns:

Description: Update the interrupt handler associated with a particular local interrupt handle.

Comments: See also: EMBX_Mailbox_Alloc

mailbox Mailbox handle to be updated with an alternative
interrupt handler.

handler Specifies the function that will be called back when
an interrupt is generated for the allocated mailbox.

param Contains an arbitrary data pointer that will be passed
to the callback handler.

EMBX_INVALID_ARGUMENT The supplied mailbox handle was invalid.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 127/211

EMBX_ModifyTuneable
Definition: #include <embx.h>

EMBX_ERROR EMBX_ModifyTuneable(EMBX_tunable_t key,
EMBX_UNIT value)

Arguments:

Returns:

Description: Modify tuneable system wide configuration values. EMBX uses sensible default
values for parameters such as thread priority and thread stack size, however, some
users need to tune these values to reduce memory usage or optimize thread
interactions. Many values have been made tuneable to allow users to modify their
systems without recompiling Multicom components.

This call alters a single tuneable parameter selected by key, which can be one of the
values in Table 16:

Unlike most EMBX calls it is possible to modify tuneables before the EMBX API has
been initialized.

Note: Tuneables that affect thread initialization do not modify any thread that has already
been created. It is therefore recommended that tuneables are modified during system
boot before any transport is opened.

Comments: See also: MME_ModifyTuneable

key Specify the tuneable value to be modified.

value The new value for the tuneable.

EMBX_INVALID_ARGUMENT The supplied key is invalid or not support on this
operating system.

EMBX_SUCCESS The tuneable has been successful updated.

Table 16.Tuneable values for EMBX parameters

Value Description

EMBX_TUNEABLE_THREAD_STACK_SIZE

(Value interpreted as size in bytes).

Tune the stack size of any thread created by
either EMBX or MME. All such threads use
the same stack size and these stacks are
used to make calls to any instantiated MME
transformer. The stack requirements of
transformers must be considered when
tuning this value.

EMBX_TUNEABLE_THREAD_PRIORITY

(Value interpreted as an OS priority level).

Tune the priority of threads created by any
EMBX transport. These threads are typically
used for administrative messages (such as
port creation or closure) but may also be
required by some transports to perform
communication. A fairly high value is
recommended and the value should always
be higher than all MME threads (see
MME_ModifyTuneable).

Function descriptions Multicom

128/211 7574220

EMBX_Offset
Definition: #include <embx.h>

EMBX_ERROR EMBX_Offset(EMBX_TRANSPORT tp,
EMBX_VOID *address,
EMBX_INT *offset)

Arguments:

Returns:

Description: Translate an address, which is within the memory pool of an initialized transport, to an
opaque value suitable for transmission on that transport. If the address is not within
the bounds of the transport’s memory pool then the call will fail.

This call may not be supported on all transport types, which is indicated by the
allowsPointerTranslation field in the transport information structure.

Comments: See also: EMBX_Address

address Specifies the pointer to be translated.

offset Specifies a pointer to the opaque value to be
initialized.

EMBX_INVALID_TRANSPORT The transport handle is invalid or the transport does
not support this operation.

EMBX_INVALID_ARGUMENT The address or offset is an invalid pointer.

EMBX_INCOHERENT_MEMORY The call was successful and the supplied memory
address resides in incoherent memory.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 129/211

EMBX_OpenTransport
Definition: #include <embx.h>

EMBX_ERROR EMBX_OpenTransport(EMBX_CHAR *name,
 EMBX_TRANSPORT *tp)

Arguments:

Returns:

Description: Open the named transport, initialize it if necessary and return a transport handle for
use in subsequent API calls. If the transport is already waiting for initialization to
complete then this call will block until either:

– the initialization is successful

– it is interrupted by the driver (due to an EMBX_Deinit or
EMBX_UnregisterTransport)

– it is interrupted by the operating system

Comments: See also: EMBX_CloseTransport

EMBX_Deinit

EMBX_Init

EMBX_UnregisterTransport

name Specifies the name of the transport to open.

tp Specifies a pointer to the transport handle to be
initialized.

EMBX_DRIVER_NOT_INITALIZED The driver has not yet been initialized.

EMBX_INVALID_ARGUMENT The name or transport pointers are invalid or the
transport name does not exist.

EMBX_NOMEM There were insufficient resources available to
create internal data structures.

EMBX_SYSTEM_ERROR The transport failed to initialize with an
unrecoverable error or the driver interrupted the
call.

EMBX_SYSTEM_INTERRUPT The transport initialization was interrupted by the
OS.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

130/211 7574220

EMBX_Receive
Definition: #include <embx.h>

typedef enum { EMBX_REC_MESSAGE, EMBX_REC_OBJECT }
EMBX_RECEIVE_TYPE;

typedef struct {
EMBX_RECEIVE_TYPE type;
EMBX_HANDLE handle;
EMBX_VOID *data;
EMBX_UINT offset;
EMBX_UINT size;

} EMBX_RECEIVE_EVENT;

EMBX_ERROR EMBX_Receive(EMBX_PORT port,
EMBX_RECEIVE_EVENT *event)

Arguments:

Returns:

Description: Receive a message or object update event from a communication port. This call will
fail, not block, if no such event is pending. The port handle must be one that was
returned by EMBX_CreatePort; handles that originated from either EMBX_Connect
or EMBX_ConnectBlock will result in the call failing with EMBX_INVALID_PORT.

The returned event structure is filled in with details from the originating
EMBX_SendMessage or EMBX_SendObject call. The receiver must assume that
only the number of bytes specified starting at the given offset contain valid data. For
an event of type EMBX_REC_MESSAGE the handle will be set to
EMBX_INVALID_HANDLE_VALUE and the offset will always be zero. The data pointer
field is a valid machine pointer to the beginning of the message buffer or object which
the receiver can use directly to access the contents. In the case of an
EMBX_REC_OBJECT event this pointer is identical to that which would be returned
from EMBX_GetObject given the object handle also in the event structure.

The receiver of a message event is responsible for freeing the message buffer once it
has no further need for it, as if the buffer had been returned from EMBX_Alloc, or
sending the buffer on to another port.

port Specifies the port handle to receive the buffer from.

event Specifies a pointer to an event structure to be
initialized.

EMBX_INVALID_PORT The port handle was invalid.

EMBX_INVALID_ARGUMENT The event pointer was invalid.

EMBX_INVALID_STATUS No messages were available on the port.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 131/211

Comments: See also: EMBX_Alloc

EMBX_CreatePort

EMBX_Free

EMBX_GetObject

EMBX_SendMessage

EMBX_SendObject

Function descriptions Multicom

132/211 7574220

EMBX_ReceiveBlock
Definition: #include <embx.h>

EMBX_ERROR EMBX_ReceiveBlock(EMBX_PORT port,
 EMBX_RECEIVE_EVENT *event)

Arguments:

Returns:

Description: Receive a message or object update event from a communication port, blocking if no
message is available. The port handle must be one that was returned by
EMBX_CreatePort; handles that originated from either EMBX_Connect or
EMBX_ConnectBlock will result in the call failing with EMBX_INVALID_PORT. If the
port is closed by another task, while this call is blocked, then it will return
EMBX_PORT_CLOSED. If the driver invalidated the port because of an EMBX_Deinit,
EMBX_UnregisterTransport or some other transport specific event it will return
EMBX_PORT_INVALIDATED. In the later case it is still the responsibility of the
application to close the port handle.

The returned event structure (see EMBX_Receive on page 130) is filled in with details
from the originating EMBX_SendMessage or EMBX_SendObject call. The receiver
must assume that only that number of bytes specified starting at the given offset
contain valid data. For an event of type EMBX_REC_MESSAGE the handle will be set to
EMBX_INVALID_HANDLE_VALUE and the offset will always be zero. The data pointer
field is a valid machine pointer to the beginning of the message buffer or object, which
the receiver can use directly to access the contents. In the case of an
EMBX_REC_OBJECT event this pointer is identical to that which would be returned
from EMBX_GetObject given the object handle also in the event structure.

The receiver of a message event is responsible for freeing the message buffer once it
has no further need for it, as if the buffer had been returned from EMBX_Alloc, or
sending the buffer on to another port.

port Specifies the port handle to receive the buffer from.

event Specifies a pointer to an event structure to be
initialized.

EMBX_INVALID_PORT The port handle was invalid.

EMBX_INVALID_ARGUMENT The event pointer was invalid.

EMBX_PORT_CLOSED The port handle was closed while blocked.

EMBX_PORT_INVALIDATED The port handle was invalidated while blocked.

EMBX_SYSTEM_INTERRUPT The call was interrupted by the OS before receiving
anything.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 133/211

Comments: See also: EMBX_Alloc

EMBX_CreatePort

EMBX_Deinit

EMBX_Free

EMBX_SendMessage

EMBX_SendObject

EMBX_UnregisterTransport

Function descriptions Multicom

134/211 7574220

EMBX_RegisterObject
Definition: #include <embx.h>

EMBX_ERROR EMBX_RegisterObject(EMBX_TRANSPORT tp,
EMBX_VOID *object,
EMBX_UINT size,
EMBX_HANDLE *handle)

Arguments:

Returns:

Description: Register the given object with the specified transport, returning a transport unique
handle for the object. The returned handle is used to identify the object by any
application in the system with an open transport handle, to the same transport it is
registered in, in calls to EMBX_GetObject, EMBX_SendObject and
EMBX_UpdateObject.

The same physical object can be registered with multiple transports as well as
multiple times in the same transport.

Comments: See also: EMBX_DeregisterObject

EMBX_GetObject

EMBX_SendObject

EMBX_UpdateObject

tp Specifies the transport the object handle is to be
registered in.

object Specifies the pointer to the beginning of the object’s
memory to be registered.

size Specifies the size of the object to register.

handle Specifies the object handle variable to initialize.

EMBX_INVALID_TRANSPORT The transport handle is invalid.

EMBX_INVALID_ARGUMENT The object or handle pointers is invalid.

EMBX_NOMEM There were insufficient resources to register the
object.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 135/211

EMBX_RegisterTransport
Definition: #include <embx.h>

typedef EMBX_Transport_t *EMBX_TransportFactory_fn(EMBX_VOID *)

EMBX_ERROR EMBX_RegisterTransport(EMBX_TransportFactory_fn *fn,

EMBX_VOID *arg,

EMBX_UINT arg_size,

EMBX_FACTORY *handle)

Arguments:

Returns:

Description: Register the given transport factory function and argument pair with EMBX. This may
be called before or after EMBX_Init, depending on the system environment being
used. If called before EMBX_Init this will simply register the function/argument pair
with the EMBX driver. If the driver is currently initialized then this call will both register
the function/argument pair with the driver and call the function with that argument to
try and create a transport instantiation.

The call makes a copy of the argument, based on the arg_size parameter;
therefore the arg parameter does not need to be maintained after the call.

The returned factory handle can be used to un-register the factory at a later time
using EMBX_UnregisterTransport.

Comments: See also: EMBX_Init

EMBX_UnregisterTransport

fn Specifies the function to be called to create a transport
instantiation.

arg Specifies the argument to be passed to the factory
function.

size Specifies the size of the argument in bytes.

handle Specifies the factory handle variable to initialize.

EMBX_INVALID_ARGUMENT One or more of the arguments were invalid.

EMBX_NOMEM There were insufficient resources to register the
object.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

136/211 7574220

EMBX_SendMessage
Definition: #include <embx.h>

EMBX_ERROR EMBX_SendMessage(EMBX_PORT port,
EMBX_VOID *buffer,
EMBX_UINT size)

Arguments:

Returns:

Description: This transfers the given message buffer to the destination port along with the size
value, which must not be larger than the size of buffer. The API only guarantees that
the first “size” bytes of the buffer will be transmitted to the destination; however the
transport implementation is free to send more of the buffer if it wishes. The physical
size of the buffer on the destination will always be the same size as the source buffer,
even on a copying transport. If “size” is zero, the effect is that of transferring
ownership of the underlying buffer to the destination without incurring any data
copying penalty in a copy based transport.

The port handle must have been obtained through a call to EMBX_Connect or
EMBX_ConnectBlock; if the port handle was obtained from EMBX_CreatePort
then the call will fail with EMBX_INVALID_PORT. The buffer must have been allocated
on the same transport using EMBX_Alloc or received from a port that exists in the
same transport as that which contains the destination port. If the buffer belongs to a
different transport then the call will fail with EMBX_INVALID_ARGUMENT.

After a buffer has been sent to the destination, the buffer is no longer owned by the
sender and may have been freed by the driver; hence, the sender must NOT use this
buffer pointer again.

Comments: See also: EMBX_Alloc

EMBX_Connect

EMBX_ConnectBlock

EMBX_CreatePort

EMBX_Receive

EMBX_ReceiveBlock

port Specifies the destination port for the message.

buffer Specifies a pointer to the buffer to send.

size Specifies the size of the message.

EMBX_INVALID_PORT The port handle was invalid.

EMBX_INVALID_ARGUMENT The buffer was not valid or the specified message
size was larger that the buffer.

EMBX_NOMEM There were insufficient resources either on the
sending or receiving side to complete the operation.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 137/211

EMBX_SendObject
Definition: #include <embx.h>

EMBX_ERROR EMBX_SendObject(EMBX_PORT port,
 EMBX_HANDLE handle,
 EMBX_UINT offset)

EMBX_UINT size)

Arguments:

Returns:

Description: This call sends an object update event to the given destination port, updating the
specified region of the object on the destination if it uses a local copy. If in such a case
the storage for the local copy has not yet been allocated on the destination, this will
be done. If the allocation fails then this call will also fail with EMBX_NOMEM.

The port handle must have been obtained through a call to EMBX_Connect or
EMBX_ConnectBlock; if the port handle was obtained from EMBX_CreatePort
then the call will fail with EMBX_INVALID_PORT. If the object handle is not valid in the
port’s transport then the call will fail with EMBX_INVALID_ARGUMENT.

Comments: See also: EMBX_Connect

EMBX_ConnectBlock

EMBX_CreatePort

EMBX_RegisterObject

EMBX_UpdateObject

port Specifies the destination port for the object.

handle Specifies a handle to the object to be sent.

offset Specifies the offset from the start of the object where
data will be updated from.

size Specifies the amount of data to be updated on the
destination.

EMBX_INVALID_PORT The port handle was invalid.

EMBX_INVALID_ARGUMENT The object handle was not valid or the specified
offset and size does not specify a valid region
contained by the object.

EMBX_NOMEM There were insufficient resources either on the
sending or receiving side to complete the operation.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

138/211 7574220

EMBX_UnregisterTransport
Definition: #include <embx.h>

EMBX_ERROR EMBX_UnregisterTransport(EMBX_FACTORY handle)

Arguments:

Returns:

Description: Unregister the given transport factory. If a transport created using this factory is still in
existence, then the transport and its ports are invalidated and the call waits for it to be
closed down as in a call to EMBX_Deinit.

Comments: See also: EMBX_Deinit

EMBX_Init

EMBX_RegisterTransport

handle Specifies the factory handle to unregister.

EMBX_DRIVER_NOT_INITIALIZED The driver has never been initialized.

EMBX_INVALID_ARGUMENT The handle did not reference a registered
transport factory

EMBX_SYSTEM_ERROR An unexpected error occurred.

EMBX_SYSTEM_INTERRUPT The call was interrupted by the OS before the
operation completed.

EMBX_SUCCESS The call was successful.

Multicom Function descriptions

7574220 139/211

EMBX_UpdateObject
Definition: #include <embx.h>

EMBX_ERROR EMBX_UpdateObject(EMBX_PORT port,
 EMBX_HANDLE handle,
 EMBX_UINT offset)
 EMBX_UINT size)

Arguments:

Returns:

Description: This call updates the specified region of the object, identified by the object handle, on
the destination CPU identified by the port; if it uses a local copy. If the local copy has
not yet been allocated on the destination, this will be done; if that allocation fails then
this call will also fail with EMBX_NOMEM. Unlike EMBX_SendObject, no event is
queued on the port to be received by an application on the destination CPU.

The port handle must have been obtained through a call to EMBX_Connect or
EMBX_ConnectBlock; if the port handle was obtained from EMBX_CreatePort
then the call will fail with EMBX_INVALID_PORT. If the object handle is not valid in the
port’s transport then the call will fail with EMBX_INVALID_ARGUMENT.

The order in which data is copied to the destination, in a copy based transport, for
calls to EMBX_SendMessage, EMBX_SendObject and EMBX_UpdateObject using
the same port handle is guaranteed; this will be the same order as the calls complete
in.

Comments: See also: EMBX_Connect

EMBX_ConnectBlock

EMBX_CreatePort

EMBX_RegisterObject

EMBX_SendMessage

EMBX_SendObject

port Specifies the destination port for the object.

handle Specifies a handle to the object to be updated.

offset Specifies the offset from the start of the object where
data will be updated from.

size Specifies the amount of data to be updated on the
destination.

EMBX_INVALID_PORT The port handle was invalid.

EMBX_INVALID_ARGUMENT The object handle was not valid or the specified offset
and size does not specify a valid region contained by
the object.

EMBX_NOMEM There were insufficient resources either on the
sending or receiving side to complete the operation.

EMBX_SUCCESS The call was successful.

Function descriptions Multicom

140/211 7574220

EMBXSHM_mailbox_factory
Definition: #include <embxshm.h>

EMBX_Transport_t *EMBXSHM_mailbox_factory(EMBX_VOID *param)

Arguments:

Returns: A pointer to the transport this factory constructed.

Description: One of the EMBXSHM factory functions. For details of usage see Section 9.3.3: The
mailbox factory function on page 82.

Note: This function should never be called directly.

Comments: See also: EMBX_RegisterTransport

param Configuration parameter supplied to
EMBX_RegisterTransport.

Multicom Function descriptions

7574220 141/211

10.2 MME functions and macros

MME_AbortCommand
Definition: MME_ERROR MME_AbortCommand(

MME_TransformerHandle_t Handle,
MME_CommandId_t CmdId)

Arguments:

Returns:

Description: Attempt to abort a command that has been submitted to a transformer.

The behavior of this function is transformer and implementation specific. Commands
can always be aborted when in the MME_COMMAND_PENDING state, that is before
being processed. However, depending on their implementation some transformers
may also accept to abort command during their processing
(MME_COMMAND_EXECUTING state). When a command has been aborted, the Error
field of the MME_CommandStatus_t is set to MME_COMMAND_ABORTED. The
callback function on the host is called when the command is successfully aborted.

Comments: Call type:

– Host function

– Non-blocking function call (the operation completes when the callback function
has been called)

Handle Handle of the targeted transformer.

CmdId Command identity of the command to abort.

MME_SUCCESS An abort request has been submitted - this does
not imply the command has been aborted.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_INVALID_HANDLE The transformer handle is invalid.

MME_INVALID_ARGUMENT The CmdId is invalid.

Function descriptions Multicom

142/211 7574220

MME_AllocDataBuffer
Definition: MME_ERROR MME_AllocDataBuffer(

MME_TransformerHandle_t Handle,
MME_UINT Size,
MME_AllocationFlags_t Flags,
MME_DataBuffer_t **DataBuffer_p)

Arguments:

Returns:

Description: Allocate a new MME data buffer.

This command allocates memory that can be optimally communicated to the
transformer indicated by Handle. Flags can be used to specify additional useful
properties required of the allocated memory. For example, its cache ability or whether
it is required to be contiguous.

Comments: Call type

– Host function call

– Blocking function call

See also: MME_FreeDataBuffer

Handle Handle of the targeted transformer.

Size Number of bytes to allocate.

Flags Specify special requirements of the memory
allocated, see MME_AllocationFlags_t on
page 164.

DataBuffer_p Pointer to a pointer to an allocated data buffer
structure to be populated.

MME_SUCCESS The operation completed correctly.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_NOMEM The memory required to complete this command
is not available.

MME_INVALID_HANDLE The transformer handle is invalid.

MME_INVALID_ARGUMENT Flags or DataBuffer_p is invalid.

Multicom Function descriptions

7574220 143/211

MME_DeregisterTransformer
Definition: MME_ERROR MME_DeregisterTransformer(const char* name)

Arguments:

Returns:

Description: Deregister a transformer, that was previously registered on the CPU, from which the
call is made.

Comments: Call type

– Host or companion function call

– Blocking function call

See also: MME_RegisterTransformer

Section 3.2.4: Example

name The name of a transformer that has been
registered with
MME_RegisterTransformer().

MME_SUCCESS The transformer has been successfully
deregistered.

MME_INVALID_ARGUMENT The transformer name is not registered.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

Function descriptions Multicom

144/211 7574220

MME_DeregisterTransport
Definition: MME_ERROR MME_DeregisterTransport(const char* name)

Arguments:

Returns:

Description: Deregisters an EMBX transport that is being used by MME on the CPU from which
the call is made.

Comments: Call type:

– Host or companion function call

– Blocking function call

See also: MME_RegisterTransport

Section 3.2.4: Example

name The name of an EMBX transport that has been
registered with MME_RegisterTransport()

MME_SUCCESS The transport has been successfully
deregistered.

MME_INVALID_ARGUMENT The transport name is not registered.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

Multicom Function descriptions

7574220 145/211

MME_FreeDataBuffer
Definition: MME_ERROR MME_FreeDataBuffer(

MME_DataBuffer_t *DataBuffer_p)

Arguments:

Returns:

Description: Release memory previously allocated with MME_AllocDataBuffer().

This command releases memory previously allocated with
MME_AllocDataBuffer(). The behavior is undefined if the memory was not
previously allocated by the MME API or if pointers within the structure have been
modified.

Comments: Call type

– Host function call

– Blocking function call

See also: MME_AllocDataBuffer

DataBuffer_p Pointer to an allocated data buffer structure to
be freed.

MME_SUCCESS The operation completed correctly.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_INVALID_ARGUMENT DataBuffer_p is invalid.

Function descriptions Multicom

146/211 7574220

MME_GetTransformerCapability
Definition: MME_ERROR MME_GetTransformerCapability(

const char *TransformerName,
MME_TransformerCapability_t *TransformerCapability_p)

Arguments:

Returns:

Description: Return capability and requirement for a given transformer type.

The following fields of the MME_TransformerCapability_t structure must be
initialized prior to calling this function: StructSize, TransformerInfoSize and
TransformerInfo_p. All subsequent fields will be filled in by MME as a result of the
call.

Comments: Call type:

– Host function call

– Blocking function call

See also: MME_TransformerCapability_t

TransformerName Name of the transformer whose capability is to be
queried.

TransformerCapability_p Pointer to an allocated
MME_TransformerCapability_t structure
that will be filled with the capability of the
corresponding transformer.

MME_SUCCESS The operation completed correctly.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_UNKNOWN_TRANSFORMER No transformer of the specified name exists.

MME_INVALID_ARGUMENT TransformerCapability_p is invalid.

Multicom Function descriptions

7574220 147/211

MME_INDEXED_PARAM
Definition: #define MME_INDEXED_PARAM(params, name, index)

Arguments:

Returns: An lvalue (an object that can be assigned to) whose type is selected by the named
parameter.

Description: Extract a indexed named parameter from a parameter array. This macro uses other
special purpose macros or named constants to process the name.

For example, the following macros define an indexed parameter name called
ThisIsIndexed.

enum {
...
MME_OFFSET_ThisIsIndexed = 2,
...
#define MME_TYPE_ThisIsIndexed U32
}

This parameter can be extracted as follows:

MME_INDEXED_PARAM(params, ThisIsIndexed, 0) = 0xAC3;
MME_INDEXED_PARAM(params, ThisIsIndexed, 1) = 0xDDD;

Comments: See also: MME_PARAM

MME_LENGTH

MME_PARAM_SUBLIST

params Pointer to a parameter array of type
MME_GenericParams_t.

name Name of the parameter to be extracted from the array.

index Index of the parameter to extract.

Function descriptions Multicom

148/211 7574220

MME_Init
Definition: MME_ERROR MME_Init(void)

Arguments: None

Returns:

Description: Initialize the MME infrastructure. This function must be called prior to calling any other
MME functions. It must be called at least once on each processor and by each Linux
user mode process. Once initialized further calls return
MME_DRIVER_ALREADY_INITIALIZED.

Comments: See also: MME_InitTransformer

MME_Term

MME_SUCCESS The operation completed correctly.

MME_DRIVER_NOT_INITIALIZED The MME driver could not be initialized
because underlying resources were not
initialized yet.

MME_DRIVER_ALREADY_INITIALIZED MME_Init() has been called already.

MME_NOMEM The memory required to complete this
command is not available.

Multicom Function descriptions

7574220 149/211

MME_InitTransformer
Description: MME_ERROR MME_InitTransformer(

const char *Name,
MME_TransformerInitParams_t *Params_p,
MME_TransformerHandle_t *Handle_p)

Arguments:

Returns:

Description: Creates and initializes an instance of a specific transformer on a CPU.

The name argument must not be longer than MME_MAX_TRANSFORMER_NAME bytes.
The error code MME_INVALID_ARGUMENT will be returned if the name is too long.

The name of the transformer implicitly describes the type of that transformer, for
example “STAC3DecoderMacro”. This can be confirmed by using
MME_GetTransformerCapability() to examine the capability of transformer if
required.

If the host has to synchronize with transformer registration on a companion, this
function should be called iteratively until MME_SUCCESS is returned.

MME_Init must be called prior to the MME_InitTransformer function.

Comments: Call type:

– Host function call

– Blocking function call

See also: MME_Init

MME_TermTransformer

Name Name of the transformer registered with
MME_RegisterTransformer.

Params_p Pointer to an allocated
MME_TransformerInitParams_t that
contains the parameters with which the
transformer will be initialized.

Handle_p Pointer to an MME_TransformerHandle_t
that will contain the handle of the initialized
transformer.

MME_SUCCESS The device has been successfully initialized.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_NOMEM The memory required to complete this
command is not available.

MME_UNKNOWN_TRANSFORMER No transformer of the specified name exists.

MME_INVALID_ARGUMENT Params_p or Handle_p is invalid.

Function descriptions Multicom

150/211 7574220

MME_LENGTH
Definition: #define MME_LENGTH(name)

Arguments:

Returns: The length of the named parameter array.

Description: Find the length of a named parameter array.

This macro uses other special purpose macros to process the name.

For example, the following macros define a parameter name called
ThisIsAGlobalName.

#define MME_PARAMS_LENGTH_ThreeParameters 3

The macro should be used as follows:

MME_GenericParams_t params[MME_LENGTH(ThreeParameters)];

MME_PARAMS(params, ParamOne) = 1;
MME_PARAMS(params, ParamTwo) = 2;
MME_PARAMS(params, ParamThree) = 3;

Comments: See also: MME_INDEXED_PARAM

MME_PARAM

MME_PARAM_SUBLIST

MME_LENGTH_BYTES

name Name of the parameter array.

Multicom Function descriptions

7574220 151/211

MME_LENGTH_BYTES
Definition: #define MME_LENGTH_BYTES(name)

Arguments:

Description: Find the length of a named parameter array in bytes.

Returns: The length of the named parameter array in bytes.

Comments: See also: MME_INDEXED_PARAM

MME_LENGTH

MME_PARAM

MME_PARAM_SUBLIST

name Name of the parameter array.

Function descriptions Multicom

152/211 7574220

MME_ModifyTuneable
Definition: #include <mme.h>

MME_ERROR MME_ModifyTuneable(MME_tunable_t key,
MME_UNIT value)

Arguments:

Returns:

Description: Modify tuneable system wide configuration values. MME uses sensible default values
for parameters such as thread priority, however, some users need to tune such values
to optimize thread interactions. Many values have been made tuneable to allow users
to modify their systems without recompiling MME. This call alters a single tuneable
parameter selected by key, which can be one of the values in Table 17:

key Specify the tuneable value to be modified.

value The new value for the tuneable.

MME_INVALID_ARGUMENT The supplied key is invalid or not support on this
operating system.

MME_SUCCESS The tuneable has been successful updated.

Table 17.Tuneable values for MME parameters

Value(1) Description

MME_TUNEABLE_MANAGER_THREAD_
PRIORITY

Tune the priority of the MME manager
thread. This thread is responsible for
administrative operations such as
responding to:
MME_GetTransformerCapability and
MME_InitTransformer.

This should have a high priority to prevent
background batch processes (such as audio
encode) from interfering with transformer
creation.

MME_TUNEABLE_TRANSFORMER_THREAD_
PRIORITY

Tune the priority of the MME transformer
thread. This thread is responsible for
receiving MME_SEND_BUFFERS commands,
together with requests to abort the current
function or terminate the transformer.

This should have a priority greater than or
equal to the highest execution loop priority.

Multicom Function descriptions

7574220 153/211

Unlike most MME calls it is possible to modify tuneables before the MME API has
been initialized.

Note: Tuneables that affect thread initialization do not modify any thread that has already
been created. It is therefore recommended that tuneables are modified during system
boot before any transport is opened.

Comments: See also: EMBX_ModifyTuneable

MME_TUNEABLE_EXECUTION_LOOP_HIGHEST
_PRIORITY

Tune the priority of each of the execution
loop threads. The execution loops are
responsible for performing transform
requests and altering global parameters. No
execution loop should have a higher priority
than the manager or transformer threads.
The priorities of the execution loops should
be such that
MME_TUNEABLE_EXECUTION_LOOP_
HIGHEST_PRIORITY has the highest
priority and
MME_TUNEABLE_EXECUTION_LOOP_
LOWEST_PRIORITY has the lowest.

MME_TUNEABLE_EXECUTION_LOOP_ABOVE_
NORNAL_PRIORITY

MME_TUNEABLE_EXECUTION_LOOP_NORNAL_
PRIORITY

MME_TUNEABLE_EXECUTION_LOOP_BELOW_
NORNAL_PRIORITY

MME_TUNEABLE_EXECUTION_LOOP_LOWEST_
PRIORITY

1. Value interpreted as an OS priority level)

Table 17.Tuneable values for MME parameters (continued)

Value(1) Description

Function descriptions Multicom

154/211 7574220

MME_NotifyHost
Definition: MME_ERROR MME_NotifyHost(MME_Event_t event,

MME_Command_t *commandInfo,
MME_ERROR errorCode)

Arguments:

Returns:

Description: Informs the host that the transformer has generated an event.

This function must not be called from an interrupt handler.

The event argument can be one of the events listed in MME_Event_t on page 176.

This call will cause the application-supplied callback function on the host to be called
with the its event parameter set to the value of event.

Comments: Call type:

– Companion function call

– Non-blocking function call

event The event that should be passed to the host
callback. See MME_NotifyHost description.

commandInfo The MME_Command_t* passed into the
transformer function
MME_ProcessCommand_t.

errorCode The error state of the command.

MME_SUCCESS The host has been notified.

MME_INVALID_ARGUMENT An argument is invalid.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

Multicom Function descriptions

7574220 155/211

MME_PARAM
Definition: #define MME_PARAM(params, name)

Arguments:

Returns: An lvalue (an object that can be assigned to) whose type is selected by the named
parameter.

Description: Extract a named parameter from a parameter array.

This macros uses other special purpose macros or named constants to process the
name.

For example, the following macros define a parameter name called
ThisIsAGlobalName.

enum {
...
MME_OFFSET_ThisIsAGlobalName = 2,
...
#define MME_TYPE_ThisIsAGlobalName U32
}

This parameter can be extracted as follows:

MME_PARAM(params, ThisIsAGlobalName) = 0xAC3;
printf(“%d\n”, MME_PARAM(params, ThisIsAGlobalName));

Comments: See also: MME_INDEXED_PARAM

MME_PARAM_SUBLIST

MME_LENGTH

params Pointer to a parameter array of type
MME_GenericParams_t.

name Name of the parameter to be extracted from the array.

Function descriptions Multicom

156/211 7574220

MME_PARAM_SUBLIST
Definition: #define MME_PARAM_SUBLIST(params, name)

Arguments:

Returns: A pointer to a sub-list of parameters (has type MME_GenericParams_t).

Description: Extract a named parameter sub-array from a parameter array.

This macro uses other special purpose macros or named constants to process the
name.

For example, the following macros define a parameter name called
ThisIsASublist.

enum {
...
MME_OFFSET_ThisIsASublist = 2,
...
}

This parameter can be extracted as follows:

sublist = MME_PARAM_SUBLIST(params, ThisIsASublist);
MME_PARAM(sublist, SomeParameter) = 0xAC3;

Returns: A pointer to a sub-list of parameters (has type MME_GenericParams_t).

Comments: See also: MME_PARAM

MME_INDEXED_PARAM

MME_LENGTH

params Pointer to a parameter array of type
MME_GenericParams_t.

name Name of the parameter to be extracted from the array.

Multicom Function descriptions

7574220 157/211

MME_RegisterTransformer
Definition: MME_ERROR MME_RegisterTransformer(

const char *name,
MME_AbortCommand_t abortFunc,
MME_GetTransformerCapability_t getTransformerCapabilityFunc,
MME_InitTransformer_t initTransformerFunc,
MME_ProcessCommand_t processCommandFunc,
MME_TermTransformer_t termTransformerFunc)

Arguments:

Returns:

Description: Registers a transformer for later instantiation on the CPU from which this call is made.

The name argument must not be longer than MME_MAX_TRANSFORMER_NAME bytes.
The error code MME_INVALID_ARGUMENT will be returned if the name is too long.

The name of the transformer implicitly describes the type of that transformer, for
example ‘com.st.dvd.acc.Ac3DecoderMacro’. This can be confirmed by using
MME_GetTransformerCapability() to examine the capability of transformer if
required.

Comments: Call type:

– Host or companion function call

– Blocking function call

See also: MME_InitTransformer

MME_DeregisterTransformer

name A unique name for the transformer.

abort The transformer function to call when an abort
request is made.

getTransformerCapabilityFunc

The transformer function to call when a capability
request is made.

initTransformerFunc The transformer function to call when a transformer is
initialized.

processCommandFunc The function to call when a command is sent to the
transformer.

termTransformerFunc The function to call when a transformer instance is
terminated.

MME_SUCCESS The device has been successfully initialized.

Function descriptions Multicom

158/211 7574220

MME_RegisterTransport
Definition: MME_ERROR MME_RegisterTransport(const char* name)

Arguments:

Returns:

Description: Registers an EMBX transport for MME use on the CPU from which the call is made.

On the host this completes once communication has been established with the a
companion CPU that has made a call to MME_RegisterTransport().

Comments: Call type:

– Host or companion function call

– Blocking function call

See also: MME_DeregisterTransport

name The name of an EMBX transport that has been
registered with EMBX_RegisterTransport.

MME_SUCCESS The transport has been successfully initialized.

MME_INVALID_ARGUMENT The transport name is not registered.

Multicom Function descriptions

7574220 159/211

MME_Run
Definition: MME_ERROR MME_Run(void)

Arguments: None.

Returns:

Description: Commences the MME main execution loop on a companion CPU. This loop handles
messages from the host and terminates when the host calls MME_Term() or
MME_DeregisterTransport() for the transport to this CPU.

Completes when the host calls MME_Term() or MME_DeregisterTransport().

Comments: Call type:

– Companion function call

– Blocking function call

See also: MME_Term

Completes when the host calls MME_Term() or MME_DeregisterTransport().

MME_SUCCESS The main loop has terminated successfully.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_NOMEM The memory required to complete this
command is not available.

Function descriptions Multicom

160/211 7574220

MME_SendCommand
Definition: MME_ERROR MME_SendCommand(

MME_TransformerHandle_t Handle,
MME_Command_t *CmdInfo_p)

Arguments:

Returns:

Description: Send a command and its associated parameters to a specific transformer.

When inserted the MME_CommandState_t of the command is set to
MME_COMMAND_PENDING.

Comments: Call type: Host function call

Non blocking function call

See also: MME_AbortCommand

Handle Handle of the targeted transformer.

CmdInfo_p Pointer to an allocated structure that contains
the parameters of the command.

MME_SUCCESS The command has been successfully inserted
in the command queue waiting to be
processed by MME.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_NOMEM The memory required to complete this
command is not available.

MME_INVALID_HANDLE The handle does not refer to an existing
transformer

MME_INVALID_ARGUMENT CmdInfo_p is invalid.

Multicom Function descriptions

7574220 161/211

MME_Term
Definition: MME_ERROR MME_Term(void)

Arguments: None.

Returns:

Description: Terminate a connection with a MME.

Free all the associated memory space.

Comments: Call type:

– Host or companion function call

– Blocking function call

See also: MME_Init

MME_SUCCESS The operation complete correctly.

MME_DRIVER_NOT_INITIALIZED The MME driver has not be initialized.

MME_HANDLES_STILL_OPEN Could not terminate, not all transformers
have been terminated.

Function descriptions Multicom

162/211 7574220

MME_TermTransformer
Definition: MME_ERROR MME_TermTransformer(MME_TransformerHandle_t handle)

Arguments:

Returns:

Description: Terminate a transformer instance and free all the associated resources.

A transformer can not be terminated while a command is executing.

Comments: Call type:

– Host function call

– Blocking function call

See also: MME_InitTransformer

MME_AbortCommand

handle Handle of the transformer to terminate.

MME_SUCCESS The operation complete correctly.

MME_DRIVER_NOT_INITIALIZED MME has not be initialized.

MME_INVALID_HANDLE Invalid transformer handle.

MME_COMMAND_STILL_EXECUTING A command is still executing.

Multicom Function descriptions

7574220 163/211

10.3 MME constants, enums and types

MME_AbortCommand_t
Definition: MME_ERROR (*MME_AbortCommand_t) (

void *context,
MME_CommandId_t commandId)

Arguments:

Returns:

Description: Abort a transform command.

This function will be called when an abort command request is made on the host and
the command has been submitted to the transformer. The behavior is transformer-
specific; transformers that do not support command aborting must return
MME_INVALID_COMMAND.

context Transformer context data.

commandId The command identifier.

MME_SUCCESS Success.

MME_INVALID_ARGUMENT An invalid commandId parameter has been specified.

MME_INVALID_COMMAND The transformer is active and cannot be aborted.

Function descriptions Multicom

164/211 7574220

MME_AllocationFlags_t
Definition: typedef enum

{
MME_ALLOCATION_PHYSICAL,
MME_ALLOCATION_CACHED,
MME_ALLOCTION_UNCACHED

} MME_AllocationFlags_t;

Description: Flags to describe the memory properties of allocated memory.

Flags may be ‘or-ed’ together to obtain sensible combinations of allocation properties.

In general the use of MME_ALLOCTION_UNCACHED should be used with caution since
it is potentially harmful to performance. Its use should be limited to applications where
the underlying MME data buffer is used outside of the MME interface by cache
incoherent hardware. Even in this case it is preferable to use cached memory and
manage the caches if the host performs any reads or writes to the data buffer.

Constants:

Comments: See also: MME_Command_t

MME_SendCommand

MME_ALLOCATION_PHYSICAL Require the allocated memory to be
contiguous within its physical address space.

MME_ALLOCATION_CACHED Require the allocated memory to be accessed
through the cache on the host processor.

MME_ALLOCATION_UNCACHED Require the allocated memory to be accessed
directly by the host processor.

Multicom Function descriptions

7574220 165/211

MME_Command_t
Definition: typedef struct

{
MME_UINT StructSize;
MME_CommandCode_t CmdCode;
MME_CommandEndType_t CmdEnd;
MME_Time_t DueTime;
MME_UINT NumberInputBuffers;
MME_UINT NumberOutputBuffers;
MME_DataBuffer_t **DataBuffers_p;
MME_CommandStatus_t CmdStatus;
MME_UINT ParamSize;
MME_GenericParams_t Param_p;

} MME_Command_t;

Description: Defines the parameters of the command passed to the MME_SendCommand function.

While the command is in progress the master copy of all data structures passed by
pointer is owned by the companion which may not be cache coherent with the host
processor. As such writes to any data structure are illegal and reads from output
buffers should be avoided.

Fields:

StructSize Size of the structure (in bytes).

CmdCode Command to be performed.

CmdEnd Command mode completion. Specify whether or not
an event shall be generated when the command
completes. (refer to MME_CommandEndType_t
definition).

DueTime Time before the command has to be completed by
the MME.

NumberInputBuffers Number of read only buffers to be supplied to the
transformer.

NumberOutputBuffers Number of read/write buffers to be supplied to the
transformer. Note that overuse of output buffers will
lead to poor cache utilization due to excess cache
purging.

DataBuffers_p Pointer to an array of pointers to data buffers
containing all the input buffers followed by all the
output buffers. As such the length of the array is
equal to or greater than NumberInputBuffers +
NumberOutputBuffers.

CmdStatus An MME_CommandStatus_t structure that will
evolve during the processing of the command. Fields
of this structure will be filled by MME on either the
host or the companion (refer to
MME_CommandStatus_t definition).

Function descriptions Multicom

166/211 7574220

Comments: See also: MME_SendCommand

ParamSize Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES().

Param_p Pointer to an allocated parameter array that contains
information required to perform the requested
operation.

Multicom Function descriptions

7574220 167/211

MME_CommandCode_t
Definition: typedef enum

{
MME_SET_GLOBAL_TRANSFORM_PARAMS
MME_TRANSFORM,
MME_SEND_BUFFERS,

} MME_CommandCode_t;

Description: Defines the code of the command to be executed onto the MME.

The MME_SET_GLOBAL_TRANSFORM_PARAMS is defined in order to limit
communication between host and companion by setting common parameters that will
be shared by the next transformations. This command code is to be called only when
those common parameters change and to send changes to the companion.
Parameters which are transformation specific should be part of the parameters of the
MME_TRANSFORM command.

Constants:

Comments: See also: MME_Command_t

MME_SendCommand

MME_SET_GLOBAL_TRANSFORM_PARAMS

Set “generic” parameters for a specific transformer for
subsequent transform requests. Those parameters
will be used by the transformer until parameters are
changed by another call to set generic parameters.

MME_TRANSFORM Commence a transform operation, that is process
data according to the current context and the
parameters associated with the command.

MME_SEND_BUFFERS Provide input and/or output buffers.

Function descriptions Multicom

168/211 7574220

MME_CommandEndType_t
Definition: typedef enum

{
MME_COMMAND_END_RETURN_NO_INFO
MME_COMMAND_END_RETURN_NOTIFY

} MME_CommandEndType_t;

Description: Defines the behavior on the completion of a MME_SendCommand command.

Constants:

Comments: See also: MME_UINT

MME_Command_t

MME_SendCommand

MME_COMMAND_END_RETURN_NO_INFO

No event will be generated when the command
completes. But the MME_CommandStatus_t
structure passed when calling MME_SendCommand is
filled giving the application the opportunity to retrieve
the command status.

MME_COMMAND_END_RETURN_NOTIFY

An event will be generated when the command
completes by calling the callback function passed
when the transformer was instantiated.

Multicom Function descriptions

7574220 169/211

MME_CommandId_t
Definition: typedef MME_UINT MME_CommandId_t

Description: Used to identify a command. This identifier is allocated by MME when a call is made
to MME_SendCommand.

Function descriptions Multicom

170/211 7574220

MME_CommandState_t
Definition: typedef enum

{
MME_COMMAND_PENDING,
MME_COMMAND_EXECUTING,
MME_COMMAND_COMPLETED,
MME_COMMAND_FAILED

} MME_CommandState_t;

Description: Defines the different states a command may have. See Section 3.6: Issuing
commands on page 29.

Constants:

Comments: See also: MME_CommandStatus_t

MME_COMMAND_PENDING Command waiting to be processed by the MME.

MME_COMMAND_EXECUTING The command is the currently executed by the MME.

MME_COMMAND_COMPLETED The command has been completed by the
transformer and results are available for the
application.

MME_COMMAND_FAILED Errors occurred during command processing by the
transformer or by MME.

Multicom Function descriptions

7574220 171/211

MME_CommandStatus_t
Definition: typedef struct

{
MME_CommandId_t CmdId;
MME_CommandState_t State;
MME_Time_t ProcessedTime;
MME_ERROR Error;
MME_UINT AdditionalInfoSize;
MME_GenericParams_t AdditionalInfo_p;

} MME_CommandStatus_t;

Description: Structure filled by MME with the results of the corresponding transformation actions
performed.

With the exception of the additional parameters all members of the
MME_CommandStatus_t are populated by the MME as part of MME_SendCommand.

Note: MME_CommandStatus_t is not supplied directly to any MME API call (it forms part of
the definition of MME_Command_t and is therefore not prefixed by a structure size).

Fields AdditionalInfoSize and AdditionalInfo_p are filled by the caller
before calling the MME_SendCommand function. The data pointed to by
AdditionalInfo_p is transported bidirectionally - that is, it is sent from the host to
the companion when the command is submitted and back from the companion to the
host when the command completes.

Field CmdId is filled by the MME_SendCommand function.

Fields ProcessedTime and Error are filled by MME itself. These fields are
relevant only when the command has been processed that is when the field State
has turned to the MME_COMMAND_COMPLETED or MME_COMMAND_FAILED value.

This structure is owned by the transformer once passed into the
MME_ProcessCommand_t transformer entry point and the State field may be
modified by the transformer to reflect that a transform has been deferred. See
Section 4.4.2: Deferred commands on page 41.

Fields:

Comments: See also: MME_Command_t

MME_SendCommand

CmdId Unique identifier of the command the structure is
related to. This field is filled by the
MME_SendCommand function.

State State of the command.

ProcessedTime Time spent processing the command.

Error Command status as a result of processing.

AdditionalInfoSize Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES().

AdditionalInfo_p Pointer to an allocated parameter array where the
MME can store additional info related to the
performed transformation (transformer specific).

Function descriptions Multicom

172/211 7574220

MME_DataBuffer_t
Definition: typedef struct

{
MME_UINT StructSize;
void *UserData_p;
MME_UINT Flags;
MME_UINT StreamNumber;
MME_UINT NumberOfScatterPages;
MME_ScatterPage_t *ScatterPages_p;
MME_UINT TotalSize;
MME_UINT StartOffset;

} MME_DataBuffer_t;

Description: Definition of one (possibly scattered) buffer belonging to one stream.

A data buffer consists of a list of one or several scatter pages. Each page describes a
contiguous, linear memory block giving the transformer a memory space to work with.

Fields:

Comments: See also: MME_ScatterPage_t

MME_Command_t

StructSize Size of the structure (in bytes).

UserData_p Application specific data to aid data structure lookup
from callbacks.

Flags Buffer specific flags.

StreamNumber Identifies the stream to which the buffer belongs.

NumberOfScatterPages Number of scatter pages the buffer is composed of
(that is the number of entries of the
MME_ScatterPage_t array).

ScatterPages_p Pointer to an array of scatter pages.

TotalSize Amount of memory available for this buffer, that is, the
sum of the memory size of the scatter pages this
buffer comprises.

StartOffset Points to first valid byte in (scattered) buffer.

Multicom Function descriptions

7574220 173/211

MME_DataFormat_t
Definition: typedef struct

{
unsigned char FourCC[4];

} MME_DataFormat_t;

Description: Used to define the format of the data a transformer support for its input or output.

Refer to http://www.webartz.com/fourcc/ for a complete description of the FOURCC
definition.

Fields:

FourCC Contains the format defined using its associated Four
Character Code (FOURCC).

http://www.webartz.com/fourcc/
http://www.webartz.com/fourcc/

Function descriptions Multicom

174/211 7574220

MME_ERROR
Definition: typedef enum

{
MME_SUCCESS,
MME_DRIVER_NOT_INITIALIZED,
MME_NOMEM,
MME_INVALID_HANDLE,
MME_INVALID_ARGUMENT,
MME_UNKNOWN_TRANSFORMER,
MME_TRANSFORMER_NOT_RESPONDING,
MME_HANDLES_STILL_OPEN,
MME_COMMAND_STILL_EXECUTING,
MME_COMMAND_ABORTED,
MME_DATA_UNDERFLOW,
MME_DATA_OVERFLOW,
MME_TRANSFORM_DEFERRED,
MME_SYSTEM_INTERRUPT,
MME_EMBX_ERROR,
MME_INTERNAL_ERROR,
MME_NOT_IMPLEMENTED

} MME_ERROR;

Description: Status indicator used by all MME functions.

Note: Although MME_SUCCESS is guaranteed to be zero the numeric value of all other error
codes is unspecified. Additionally it is not guaranteed that these values will be
contiguous.

Constants:

MME_SUCCESS Command complete successfully.

MME_DRIVER_NOT_INITIALIZED

MME or some of its underlying infrastructure has not
yet been initialized.

MME_DRIVER_ALREADY_INITIALIZED

MME has been initialized already.

MME_NOMEM The system has insufficient resources to complete
this request.

MME_INVALID_HANDLE The transformer handle is invalid or out of date.

MME_INVALID_ARGUMENT One or more of the function arguments are invalid (for
example: out of range, null pointer, incorrect structure
size).

MME_UNKNOWN_TRANSFORMERThe requested transformer does not exist.

MME_INVALID_COMMAND The command code is invalid.

MME_DATA_UNDERFLOW_EVT The transformer has run out of data before
completing an output frame. The error code in
MME_CommandStatus_t will be
MME_DATA_UNDERFLOW.

Multicom Function descriptions

7574220 175/211

MME_TRANSFORMER_NOT_RESPONDING

The transformer is not responding to requests for
status.

MME_HANDLES_STILL_OPEN The operation cannot complete until all transformer
handles have been closed.

MME_COMMAND_STILL_EXECUTING

The operation cannot complete until the transformer
is idle.

MME_COMMAND_ABORTED The command did not complete because it was
explicitly aborted by the user.

MME_DATA_UNDERFLOW Insufficient input data to generate a frame of output.

MME_DATA_OVERFLOW Output buffers are too small to store the transformed
data.

MME_TRANSFORM_DEFERRED A transform has been placed in the deferred state by
a transformer.

MME_EMBX_ERROR EMBX underlying MME has reported an error.

MME_INTERNAL_ERROR There is an internal inconsistency.

MME_NOT_IMPLEMENTED The function is not implemented - for
example,MME_RegisterTransport() in Linux
user mode.

Function descriptions Multicom

176/211 7574220

MME_Event_t
Definition: typedef enum

{
MME_COMMAND_COMPLETED_EVT,
MME_DATA_UNDERFLOW_EVT,
MME_NOT_ENOUGH_MEMORY_EVT,

} MME_Event_t;

Description: Event codes associated with a command.

Events are delivered to the application by the callback mechanism.

Constants:

Comments: See also: MME_Command_t

MME_SendCommand

MME_COMMAND_COMPLETED_EVT

A command has been completed by MME. The error
code in MME_CommandStatus_t describes the
state.

MME_DATA_UNDERFLOW_EVT The transformer has run out of data before
completing an output frame. The error code in
MME_CommandStatus_t will be
MME_DATA_UNDERFLOW.

MME_NOT_ENOUGH_MEMORY_EVT

The transformer has insufficient output buffers to
output a frame. The error code in
MME_CommandStatus_t will be
MME_DATA_OVERFLOW.

Multicom Function descriptions

7574220 177/211

MME_GenericCallback_t
Definition: typedef void (*MME_GenericCallback_t)

MME_Event_t Event,
MME_Command_t *CallbackData,
void *UserData);

Description: Generic callback mechanism for communication between transformer and host.

Guaranteed not to be called in a re-entrant manner.

Fields:

Comments: See also: MME_SendCommand

MME_InitTransformer

Event Event, associated with either data buffers or
command transformations.

CallbackData Pointer to the command structure related to this
command.

UserData Reference to user data, provided with the call to
MME_InitTransformer.

Function descriptions Multicom

178/211 7574220

MME_GenericParams_t
Definition: typedef void* MME_GenericParams_t

Description: Generic type used to exchange data between host and companion CPUs.

Fields: None.

Comments: See also: MME_Command_t

Multicom Function descriptions

7574220 179/211

MME_GetTransformerCapability_t
Definition: MME_ERROR (*MME_GetTransformerCapability_t) (

MME_TransformerCapability_t *capability)

Arguments:

Returns:

Description: Provide the capabilities of a transformer.

Comments: Call type: Blocking function call.

See also: MME_GetTransformerCapability

capability Transformer parameters.

MME_SUCCESS Success.

MME_INVALID_ARGUMENT An invalid transformer parameter has been specified.

Function descriptions Multicom

180/211 7574220

MME_InitTransformer_t
Definition: MME_ERROR (*MME_InitTransformer_t) (

MME_UINT size,
MME_GenericParams_t params,
void **context)

Arguments:

Returns:

Description: Create an instance of a transformer. It is called as a result of a host call to
MME_InitTransformer()

The Callback and CallbackUserData fields of the
MME_TransformerInitParams_t structure are not valid for the transformer.

Comments: Call type: Blocking function call.

See also: MME_InitTransformer

size Size of the transformer initialization parameters in
bytes.

params Transformer initialization parameters.

context Pointer to a location in which to store a transformer
instance-specific value.

MME_SUCCESS Success.

MME_INVALID_ARGUMENT An invalid transformer parameter has been specified.

MME_NOMEM Insufficient memory available.

Multicom Function descriptions

7574220 181/211

MME_MAX_TRANSFORMER_NAME
Definition: #define MME_MAX_TRANSFORMER_NAME <const unsigned int>

Description: The maximum length in bytes of a transformer name.

This constant defines the maximum length of the transformer name that may be
passed to MME_InitTransformer() and MME_RegisterTransformer().

Comments: See Also: MME_InitTransformer

MME_RegisterTransformer

Function descriptions Multicom

182/211 7574220

MME_Priority_t
Definition: typedef enum

{
MME_PRIORITY_HIGHEST,
MME_PRIORITY_ABOVE_NORMAL,
MME_PRIORITY_NORMAL,
MME_PRIORITY_BELOW_NORMAL,
MME_PRIORITY_LOWEST,

} MME_Priority_t;

Description: The priority at which a command should be executed.

Comments: See also: MME_SendCommand

Multicom Function descriptions

7574220 183/211

MME_ProcessCommand_t
Definition: MME_ERROR (*MME_ProcessCommand_t) (

void *context,
MME_Command_t *commandInfo)

Arguments:

Returns:

Description: This function performs one of the following operations:

– commence a new transform

– set the transformer parameters

– handle the submission of data buffers

Comments: Call type: Blocking function call.

See also: Chapter 4: Writing an MME transformer on page 36.

context Transformer context.

commandInfo Data associated with the command.

MME_SUCCESS Success.

MME_INVALID_HANDLE The handle does not refer to an existing transformer.

MME_INVALID_ARGUMENT The commandInfo argument is invalid.

MME_INVALID_COMMAND The command embedded in commandInfo is
invalid.

MME_NOMEM The result of the processing of the input data does
not fit in the provided memory space.

MME_NOMEM The result of the processing of the input data does
not fit in the provided memory space.

MME_DATA_UNDERFLOW Returned when MME reaches the end of the input
buffer without being able to produce the requested
output.

Function descriptions Multicom

184/211 7574220

MME_ScatterPage_t
Definition: typedef struct {

void *Page_p;
MME_UINT Size;
MME_UINT BytesUsed;
MME_UINT FlagsIn;
MME_UINT FlagsOut;

} MME_ScatterPage_t;

Description: Describe a scatter page, that is a linear memory range within a data buffer.

BytesUsed is meaningless until the transformation completes. It is filled by the
transformer with the number of bytes it wrote into this page while processing data.

The FlagsIn field and FlagsOut fields are used to pass additional information
about the scatter page. The FlagsIn field is used to pass state from the host to the
transformer. The FlagsOut field is used to pass state from the transformer to the
host. Both fields are divided into two regions - the MME region and the application
region. The MME region is the upper 8 bits; unused bits in the MME region are
reserved and must be set to zero.

The remaining 24 bits are available to the application and transformer, see Table 5:
MME_ScatterPage_t FlagsIn and FlagsOut on page 29.

Fields:

Comments: See also: MME_DataBuffer_t

Page_p Address of the memory space.

Size Size of the page (in bytes).

BytesUsed Number of bytes used in this page.

FlagsIn Combination of generic and transformer specific
flags.

FlagsOut Combination of generic and transformer specific
flags.

Multicom Function descriptions

7574220 185/211

MME_TermTransformer_t
Definition: MME_ERROR (*MME_TermTransformer_t) (void *context)

Arguments:

Returns:

Description: Terminate an instance of a transformer and free any resources that the instance uses.

Comments: Call type: Blocking function call.

context Context of the transformer.

MME_SUCCESS Success.

MME_INVALID_HANDLE The handle does not refer to an existing
transformer.

MME_COMMAND_STILL_EXECUTING A command is still executing on the
transformer instance.

Function descriptions Multicom

186/211 7574220

MME_Time_t
Definition: typedef MME_UINTMME_Time_t;

Description: Describe the time in the MME environment.

Comments: See also: MME_Command_t

Multicom Function descriptions

7574220 187/211

MME_TransformerCapability_t
Definition: typedef struct {

MME_UINT StructSize;
MME_UINT Version;
MME_DataFormat_t InputType;
MME_DataFormat_t OutputType;
MME_UINT TransformerInfoSize;
MME_GenericParams_t TransformerInfo_p;

} MME_TransformerCapability_t;

Description: Describe the capabilities of a particular transformer.

Note: On multi-processor systems the contents of TransformerInfo_p will only be
copied in one direction (companion to host). For this reason all transformers must
treat the data pointed to as uninitialized.

Fields:

Comments: See Also: MME_GetTransformerCapability

StructSize Size of the structure (in bytes).

Version Version of the transformer.

InputType Supported input type.

OutputType Supported output types.

TransformerInfoSize Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES().

TransformerInfo_p Pointer to an allocated parameter array where the
transformer may store specific capabilities of the
transformer (transformer specific).

Function descriptions Multicom

188/211 7574220

MME_TransformerHandle_t
Definition: typedef MME_UINT MME_TransformerHandle_t

Description: Handle returned by MME_InitTransformer.

Used to identify the transformer for later function calls.

The value of zero is invalid.

Comments: See also: MME_InitTransformer

Multicom Function descriptions

7574220 189/211

MME_TransformerInitParams_t
Definition: typedef struct {

MME_UINT StructSize;
MME_Priority_t Priority;
MME_GenericCallback_t Callback;
void *CallbackUserData;
MME_UINT TransformerInitParamsSize
MME_GenericParams_t TransformerInitParams_p;

} MME_TransformerInitParams_t;

Description: Parameters to use to initialize a transformer.

The Callback and CallbackUserData fields of the
MME_TransformerInitParams_t structure are not valid for the transformer.

Fields:

Comments: See Also: MME_InitTransformer

StructSize Size of the structure (in bytes).

Priority The transform queue priority.

Callback Function pointer to handle both command and data
callbacks.

CallbackUserData Anonymous data provided with the callback. Those
data will be passed as parameters every time the
transformer will call its associated
CallbackUserData functions.

TransformerInitParamsSize

Size in bytes of the associated parameter array,
typically obtained using MME_LENGTH_BYTES().

TransformerInitParams_pPointer to an allocated parameter array that the
contains additional parameters if required
(transformer specific).

Function descriptions Multicom

190/211 7574220

MME_UINT
Definition: typedef unsigned <qualifier> int MME_UINT

Description: Unsigned integer type of at least 32 bits.

On MME implementations that share memory structures directly the size of this type
will be identical on all processors. An MME implementation that copies structures
may define this type differently on each processor to maximize efficiency.

Multicom Appendices

7574220 191/211

Appendices

The following appendices are provided:

● Transport configurations

● MME supplement

● Advanced build options

Transport configurations Multicom

192/211 7574220

Appendix A Transport configurations

This appendix provides example transport configurations for the latest targeted platforms.
This information is supplementary to, and should be read in conjunction with Chapter 8:
Using the EMBX API on page 67 and Chapter 9: Transport specifics on page 79.

A.1 EMBXSHM: STb7100-Mboard
The STb7100-Mboard contains a single STb7100 device. The STb7100 is a multi-core
device containing one ST40 processor and two ST231 companion processors, an audio
decoder and a video decoder.

This platform uses the mailbox factory function, see Section 9.3.3: The mailbox factory
function on page 82 for more details.

EMBX_Transport_t *EMBXSHM_mailbox_factory(EMBX_VOID *param)

A.1.1 Mailbox configuration

This platform contains two mailbox peripherals providing four interrupts, two for the ST40
and one each for the companion processors, as shown in Table 18.

Table 18. Mailbox configuration for MB411/STB7100

Parameter ST40 ST231 - video ST231 - audio

mailbox
address (0)

0xB9211000 0x19211000 0x19211000

interrupt
number (0)

OS21_INTERRUPT_MB_LX_DPHI
OS21_INTERRUPT_MBOX_
SH4

-1

interrupt level
(0)

-1 -1 -1

flags (0) EMBX_MAILBOX _FLAGS_SET2
EMBX_MAILBOX
_FLAGS_SET1

0

mailbox
address (1)

0xB9212000 0x19212000 0x19212000

interrupt
number (1)

OS21_INTERRUPT_MB_LX_AUDIO -1 OS21_INTERRUPT_MBOX_SH4

interrupt level
(1)

-1 -1 -1

flags (1) EMBX_MAILBOX _FLAGS_SET2 0
EMBX_MAILBOX
_FLAGS_SET1

Multicom Transport configurations

7574220 193/211

A.1.2 ST40 transport configuration

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
0, /* cpuID */
{ 1, 1, 1, 0, 0, 0, 0, 0 }, /* participants */
0x60000000 /* pointerWarp */
0, /* maxPorts */
16, /* maxObjects */
16, /* freeListSize */
0, /* sharedAddr */
(2*1024*1024) /* sharedSize */

};

Note: This transport is configured for three participants, if fewer processors are required edit the
participants map.

A.1.3 ST231-video transport configuration

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
1, /* cpuID */
{ 1, 1, 1, 0, 0, 0, 0, 0 }, /* participants */
0 /* pointerWarp */

};

Note: This transport is configured for three participants, if fewer processors are required edit the
participants map.

A.1.4 ST231-audio transport configuration

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
2, /* cpuID */
{ 1, 1, 1, 0, 0, 0, 0, 0 }, /* participants */
0 /* pointerWarp */

};

Note: This transport is configured for three participants, if fewer processors are required edit the
participants map.

A.1.5 Booting the platform

On the STb7100-Mboard the ST40 should be booted first. All processors should be booted
using the normal toolset configuration scripts.

A.2 EMBXSHM: STb7109-Ref board
The STb7109-Ref board contains a single STb7109 device. The STB7109-Ref board (also
known as the mb442) is a multi-core device containing one ST40 processor and two ST231
companion processors, an audio decoder and a video decoder. This platform also uses the
mailbox factory function and in terms of its transport configuration is the same as the
STb7100, documented in Section A.1: EMBXSHM: STb7100-Mboard on page 192.

Transport configurations Multicom

194/211 7574220

A.3 EMBXSHM: STi7200-Mboard
The STi7200-Mboard contains a single STi7200 device. The STi7200 is a multi-core device
containing one ST40 host processor and four ST231 companion processors, two audio
decoders and two video decoders.

This platform uses the EMBXSHM mailbox factory function, see Section 9.3.3: The mailbox
factory function on page 82 for more details.

EMBX_Transport_t *EMBXSHM_mailbox_factory(EMBX_VOID *param)

A.3.1 Mailbox configuration

This platform contains four mailbox peripherals providing eight interrupts, four for the ST40
and one each for the companion processors, as shown in Table 19 and Table 20.

Table 19. Mailbox configuration for (MB519 + MB520)/STi7200 video/audio 0

Parameter ST40 ST231 - video0 ST231 - audio0

mailbox
address (0)

0xFD800000 0xFD800000 0xFD800000

interrupt
number (0)

OS21_INTERRUPT_MBOX_SH4_AUD0 -1 OS21_INTERRUPT_MBOX

interrupt level
(0)

-1 -1 -1

flags (0) EMBX_MAILBOX _FLAGS_SET2 0
EMBX_MAILBOX
_FLAGS_SET1

mailbox
address (1)

0xFD801000 0xFD801000 0xFD801000

interrupt
number (1)

OS21_INTERRUPT_MBOX_SH4_DMU0 OS21_INTERRUPT_MBOX -1

interrupt level
(1)

-1 -1 -1

flags (1) EMBX_MAILBOX _FLAGS_SET2
EMBX_MAILBOX
_FLAGS_SET1

0

Table 20. Mailbox configuration for (MB519 + MB520)/STi7200 video/audio 1

Parameter ST40 ST231 - video1 ST231 - audio1

mailbox
address (2)

0xFD802000 0xFD802000 0xFD802000

interrupt
number (2)

OS21_INTERRUPT_MBOX_SH4_AUD1 -1 OS21_INTERRUPT_MBOX

interrupt
level (2)

-1 -1 -1

flags (2) EMBX_MAILBOX _FLAGS_SET2 0
EMBX_MAILBOX
_FLAGS_SET1

Multicom Transport configurations

7574220 195/211

A.3.2 ST40 transport configuration

The following code excerpt shows an example OS21 configuration for an STi7200 system
where the ST40 host (32-bit SE mode) and the ST231 Audio0 companion are being used.

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
0, /* cpuID */
{ 1, 1, 0, 0, 0, 0, 0, 0 }, /* participants (Not used)*/
0x00000000 /* pointerWarp */
0, /* maxPorts */
64, /* maxObjects */
64, /* freeListSize */
(void *) 0x00000000, /* sharedAddr */
(1*1024*1024) /* sharedSize */
0x800000000, /* PRIMARY warpRangeAddr (32-bit) */
0x100000000, /* PRIMARY warpRangeSize */
0x400000000, /* SECONDARY warpRangeAddr2 (32-bit) */
0x100000000, /* SECONDARY warpRangeSize2 */

};

Note: The primary Warp range is the LMI#1 memory region as this is where the ST40 host code is
loaded by default, and hence where the EMBXSHM heap is allocated.

STLinux

On STLinux the Multicom kernel module configuration for this would be;

embxmailbox.ko mailbox0=0xfd800000:44:set2
embxshm.ko mailbox0=shm:0:3:0x00000000:0:64:64:0:1024:0x40000000:
0x10000000:0x80000000:0x10000000

Note: The primary Warp range is the LMI#0 memory region as this is where the STLinux 2.3
kernel must be loaded. However, this conflicts with the default load address of the ST231
companion code and hence must be modified if this code is to be loaded directly into the
ST231 using tools such as st200gdb or st200xrun.

mailbox
address (3)

0xFD803000 0xFD803000 0xFD803000

interrupt
number (3)

OS21_INTERRUPT_MBOX_SH4_DMU1 OS21_INTERRUPT_MBOX -1

interrupt
level (3)

-1 -1 -1

flags (3) EMBX_MAILBOX _FLAGS_SET2
EMBX_MAILBOX
_FLAGS_SET1

0

Table 20. Mailbox configuration for (MB519 + MB520)/STi7200 video/audio 1 (continued)

Parameter ST40 ST231 - video1 ST231 - audio1

Transport configurations Multicom

196/211 7574220

A.3.3 ST231- Audio 0 transport configuration

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
1, /* cpuID */
{ 1, 1, 0, 0, 0, 0, 0, 0 }, /* participants */
0 /* pointerWarp */

};

Note: This transport is configured for two participants, if a different number of processors is
required edit the participants map.

A.4 EMBXSHM: STi7111-Mboard
The STi7111-Mboard contains a single STi7111 device. The STi7111 is a multi-core device
containing one ST40 host processor and two ST231 companion processors, an audio
decoder and a video decoder.

This platform uses the EMBXSHM mailbox factory function, see Section 9.3.3: The mailbox
factory function on page 82 for more details.

EMBX_Transport_t *EMBXSHM_mailbox_factory(EMBX_VOID *param)

A.4.1 Mailbox configuration

This platform contains two mailbox peripherals providing four interrupts, two for the ST40
and one each for the companion processors, as shown in Table 21.

Table 21. Mailbox configuration for MB618/STi7111

Parameter ST40 ST231 - video0 ST231 - audio0

mailbox
address (0)

0xFE211000 0xFE211000 0xFE211000

interrupt
number (0)

OS21_INTERRUPT_MB_LX_DPHI
OS21_INTERRUPT_MBOX_S
H4

-1

interrupt
level (0)

-1 -1 -1

flags (0) EMBX_MAILBOX _FLAGS_SET2
EMBX_MAILBOX
_FLAGS_SET1

0

mailbox
address (1)

0xFE212000 0xFE212000 0xFE212000

interrupt
number (1)

OS21_INTERRUPT_MB_LX_AUDIO -1 OS21_INTERRUPT_MBOX_SH4

interrupt
level (1)

-1 -1 -1

flags (1) EMBX_MAILBOX _FLAGS_SET2 0
EMBX_MAILBOX
_FLAGS_SET1

Multicom Transport configurations

7574220 197/211

A.4.2 ST40 transport configuration

The following code excerpt shows an example OS21 configuration for an STi7111 system
where the ST40 host (29-bit mode) and the ST231 audio and video companions are being
used.

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
0, /* cpuID */
{ 1, 1, 1, 0, 0, 0, 0, 0 }, /* participants (Not used)*/
0x00000000 /* pointerWarp */
0, /* maxPorts */
16, /* maxObjects */
16, /* freeListSize */
0, /* sharedAddr */
(1*1024*1024) /* sharedSize */
0x0C000000, /* PRIMARY warpRangeAddr (29-bit) */
0x100000000, /* PRIMARY warpRangeSize */
0x000000000, /* No SECONDARY warp range */
0x000000000, /* No SECONDARY warp range*/

};

Note: This transport is configured for two participants, if fewer processors are required edit the
participants map.

STLinux

On STLinux the Multicom kernel module configuration for this would be:

embxmailbox.ko mailbox0=0xfe211000:136:set2,mailbox1=0xfe212000:137:set2

embxshm.ko mailbox0=shm:0:7:0x00000000:0:16:16:0:1024:0x0c000000:0x10000000

A.4.3 ST231-video transport configuration

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
1, /* cpuID */
{ 1, 1, 1, 0, 0, 0, 0, 0 }, /* participants */
0 /* pointerWarp */

};

Note: This transport is configured for three participants, if fewer processors are required edit the
participants map.

A.4.4 ST231-audio transport configuration

EMBXSHM_MailboxConfig_t config = {
"shm", /* name */
2, /* cpuID */
{ 1, 1, 1, 0, 0, 0, 0, 0 }, /* participants */
0 /* pointerWarp */

};

Note: This transport is configured for three participants, if fewer processors are required edit the
participants map.

MME supplement Multicom

198/211 7574220

Appendix B MME supplement

This appendix provides supplementary information to Part 2 MME user guide.

B.1 Parameter encoding
This section describes a simply interface for a simple MPEG video decoder showing how
the configuration parameters can be customized for each transformer.

B.1.1 Samples definitions

lists the MPEG video decoders specific definitions.

Table 22. MPEG video decoders specific definitions

Type Description

MPGV_PictureType_t
Defines the different picture types an MPEG video
transformation can handle.

MPGV_GlobalParams_t
Parameters to be used for the next transformation
an MPEG transformer has to process.

MPGV_DecodeParams_t
Parameters used by an MPEG transformer to
decode an MPEG picture.

Multicom MME supplement

7574220 199/211

MPGV_PictureType_t

Definition: typedef enum
{

MPGV_PICTURE_TYPE_I,
MPGV_PICTURE_TYPE_P,
MPGV_PICTURE_TYPE_B,

} MPGV_PictureType_t;

Description: Defines the different picture types an MPEG video transformation can handle.

Fields:

Comments: See Also: MPGV_DecodeParams_t

MPGV_PICTURE_TYPE_I Picture type is I.

MPGV_PICTURE_TYPE_P Picture type is P.

MPGV_PICTURE_TYPE_B Picture type is B.

MME supplement Multicom

200/211 7574220

MPGV_GlobalParams_t

Definition:

enum MPGV_GlobalParamsIdx {
MME_OFFSET_MPGVGlobal_horizontal_size_value,
MME_OFFSET_MPGVGlobal_vertical_size_value,
MME_OFFSET_MPGVGlobal_intra_quantiser_matrix,
MME_OFFSET_MPGVGlobal_non_intra_quantiser_matrix =

MME_OFFSET_MPGVGlobal_intra_quantiser_matrix + 64,

MME_LENGTH_MPGVGlobal =
MME_OFFSET_MPGVGlobal_non_intra_quantiser_matrix + 64

#define MME_TYPE_MPGVGlobal_horizontal_size_value U32
#define MME_TYPE_MPGVGlobal_vertial_size_value U32
#define MME_TYPE_MPGVGlobal_intra_quantiser_matrix U8
#define MME_TYPE_MPGVGlobal_non_intra_quantiser_matrix U8
};
typedef MME_GenericParams_t MPGV_GlobalParams_t[MME_LENGTH(MPGVGlobal)];

Description: Parameters to be used for the next transformation an MPEG transformer has to
process.

The following code provides a simplified example:

MPGV_GlobalParams_t params;

MME_PARAM(params, Length) = MME_LENGTH(MPGVGlobal);
MME_PARAM(params, MPGVGlobal_horizontal_size_value) = hsv;
MME_PARAM(params, MPGVGlobal_vertical_size_value) = vsv;
for (i=0; i<64; i++) {
MME_INDEXED_PARAM(params, MPGVGlobal_intra_quantiser_matrix, i) =

iqm[i];
/* ... */

}

or to declare parameters statically:

MPGV_GlobalParams_t params = {
10,
10,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

/* ... */
}

Comments: See Also: MME_AllocationFlags_t

MME_SendCommand

MME_PARAM

MME_INDEXED_PARAM

Multicom MME supplement

7574220 201/211

MPGV_DecodeParams_t

Definition:

enum MPGVIdx {
MME_OFFSET_MPGV_picture_type,
MME_OFFSET_MPGV_full_pel_forward_vector,
MME_OFFSET_MPGV_forward_f_code,
MME_OFFSET_MPGV_full_pel_backward_vector,
MME_OFFSET_MPGV_backward_f_code,
MME_OFFSET_MPGV_forward_horizontal,
MME_OFFSET_MPGV_forward_vertical,
/* ... */

MME_LENGTH_MPGV

#define MME_TYPE_MPGV_picture_type MPGV_Picture_t
#define MME_TYPE_MPGV_full_pel_forward_vector U32
#define MME_TYPE_MPGV_forward_f_code U32
#define MME_TYPE_MPGV_full_pel_backward_vector U32
#define MME_TYPE_MPGV_backward_f_code U32
#define MME_TYPE_MPGV_forward_horizontal U32
#define MME_TYPE_MPGV_forward_vertical U32
/* ... */
};
typedef MME_GenericParams_t MPGV_DecodeParams_t[MME_LENGTH(MPGV)];

Description: Parameters to be used by a MPEG transformer to be decode an MPEG picture.

Fields:

The following code provides an example:

MME_Command_t command;
MME_CommandStatus_t status;
MME_DataBuffer_t buffers[4];
MPGV_DecodeParams_t params;

command.StructSize = sizeof(command);
command.CmdEnd = MME_COMMAND_END_RETURN_NOTIFY;
command.DueTime = now + (20 * MS);
command.CmdStatus_p = &status;
command.NumInputBuffers = 3;
command.NumOutputBuffers = 1;
command.Buffers_p = &buffers;
command.Param_p = ¶ms;

status.StructSize = sizeof(status);

MPGV_picture_type Type of the picture that has to be decoded

MPGV_full_pel_forward_vector As described in ISO/IEC 13818-2.

MPGV_forward_f_code As described in ISO/IEC 13818-2.

MPGV_full_pel_backward_vector As described in ISO/IEC 13818-2.

MPGV_backward_f_code As described in ISO/IEC 13818-2.

MPGV_forward_horizontal As described in ISO/IEC 13818-2.

MPGV_forward_vertical As described in ISO/IEC 13818-2.

...

MME supplement Multicom

202/211 7574220

/* Setup the input buffers, compressed data, backward reference picture and
forward reference picture */
/* Setup the output buffer, the decompressed picture */

/* Setup the transformer specific parameter structure */
MME_PARAM(params, MPGV_picture_type) = pt;
MME_PARAM(params, MPGV_full_pel_forward_vector = 0;
/* ... */
err = MME_SendCommand(handle, MME_TRANSFORM, &command);

Comments: See Also: MPGV_GlobalParams_t

MME_AllocationFlags_t

MME_SendCommand

MME_PARAM

Multicom Advanced build options

7574220 203/211

Appendix C Advanced build options

This appendix describes how environment or make command line variables can be used to
tailor the Multicom build process. See Section 2.2: Building Multicom on page 14 for details
on how to build the software.

Note: Many of the options described below alter they way the software is built. For such changes it
is important that the tree is cleaned before building to prevent make’s build avoidance
techniques from interfering with the changes.

C.1 Manual toolset selection
By using variables specified on the make command line it is possible to override the
automatic toolset selections. This is used either to suppress the build for a particular
processor and operating system in order to reduce compilation time or to forcibly enable a
processor and operating system combination, when your environment is not automatically
detected.

C.2 Debugging assertions and logging
All target resident source code is supplied with the Multicom distribution, this allows
application developers to enable the in built assertion checking and/or run-time logging to
help them identify problems.

Note: Debug assertions are runtime tests compiled into the application that, to a limited extent,
verify correct operation of the program. This is supplementary to normal debugging which
requires only debugging information. Compiling with debugging information is discussed in
Section 2.2: Building Multicom on page 14.

Table 23. Make variables used for manual toolset selection

Make variable Description

ENABLE_IA32_LINUX

DISABLE_IA32_LINUX
Linux (user mode) for Intel x86.

ENABLE_IA32_WINNT

DISABLE_IA32_WINNT
Windows NT/2000/XP for Intel x86.

ENABLE_ST40_LINUX

DISABLE_ST40_LINUX
Linux (user mode) for ST40.

ENABLE_ST40_LINUX_KO

DISABLE_ST40_LINUX_KO
Linux (kernel mode) for ST40.

ENABLE_ST40_OS21

DISABLE_ST40_OS21
OS21 for ST40.

ENABLE_ST231_OS21

DISABLE_ST231_OS21
OS21 for ST231.

ENABLE_SPARC_SOLARIS

DISABLE_SPARC_SOLARIS
Solaris for SPARC.

Advanced build options Multicom

204/211 7574220

All these facilities are controlled at build time by a single environment or make variable
DEBUG_CFLAGS. The contents of this variable are place on the command line for every
compiler invocation allowing DEBUG_CFLAGS to be used to defined C pre-processor macros
the alter the build

Thus to build an Multicom tree with the maximum possible amount of diagnostic code the
following command line could be used.

make install DEBUG_CFLAGS=”-DEMBX_VERBOSE -DEMBX_INFO_MAILBOX=1 -
DEMBX_INFO_SHELL=1 -DEMBX_INFO_SHM=1 -DRPC_VERBOSE”

Note: Enabling all possible tracing is extremely performance damaging and will be likely to swamp
all other standard output. Such complete tracing is often useful for hardware bring up but
rarely desirable at other times.

DEBUG_CFLAGS does not have to be specified on the make command line; it can also be set
as an environment variable.

C.3 Running the test suites
The Multicom distribution contains two automatic test suites, one for RPC and one for
EMBX. These suites are particular useful for checking that Multicom is fully functional after
porting to a new platforms.

Table 24. Pre-processor macros that enable diagnostic code

Pre-processor macro Purpose

EMBX_VERBOSE

Enable all debug assertions within the EMBX tree. This will also cause
the tracing code to be compiled although when used alone this macro
will not cause any tracing to be output since each module must have
tracing separately enabled.

EMBX_INFO_MAILBOX=1
Enable the mailbox library tracing, this shows every call to the
hardware mailbox management code (requires EMBX_VERBOSE).

EMBX_INFO_SHELL=1
Enable shell level tracing, this shows every call to the EMBX API
(requires EMBX_VERBOSE).

MME_INFO=1 Enable tracing within the MME implementation.

MME_VERBOSE Enable all debug assertions with the MME tree.

EMBX_INFO_SHM=1
Enable tracing with the shared memory transport, this shows all
internal calls between the shell and the shared memory transport.

RPC_VERBOSE
Enables tracing within the RPC micro server. The RPC micro server is
used only from Linux user mode and trace every transaction between
user space and kernel space.

Table 25. Directories contains the test suites

Test suite Directory

EMBX Transport $RPC_ROOT/src/embx/test/transport

MME $RPC_ROOT/src/mme/test

RPC $RPC_ROOT/src/rpc/test

Multicom Advanced build options

7574220 205/211

All suites share a similar structure and unless otherwise stated the information in the section
applies equally to both. For this reason the variable RPC_TEST will be used to represent the
directory containing whichever test suite is used.

Each test suite requires two co-operating processors to run correctly. Five environment
variables are required to configure the processors on which the test suite runs. These are
described in Table 26 on page 205.

Once the environment variables have been set up appropriately the test can be invoked as
follows:

cd <RPC_TEST>
make run

C.4 Tuneable parameters
Both EMBX and MME allow parameters such as thread priority and thread stack size to be
tuned without recompiling Multicom components. The functions to modify tuneable
parameters are:

EMBX_ERROR EMBX_ModifyTuneable(EMBX_Tuneable_t key, EMBX_UINT value)
MME_ERROR MME_ModifyTuneable(MME_Tuneable_t key, MME_UINT value)

Each call to one of the above functions allows a single tuneable value to be updated.
EMBX_ModifyTuneable allows the priority of EMBX worker threads to be altered as well
as being able to modify the stack size of all EMBX and MME threads.
MME_ModifyTuneable allows only the priority of MME worker threads to be altered since
the EMBX call is used to modify the stack size of MME threads.

Table 26. Environment variables for test suites

Variable Description

PLATFORM
The name of the platform being compiled for, which is typically the name
of the board in lowercase. A list of supported platforms can be obtained by
navigating to $RPC_ROOT/src and typing make platforms.

OS_0 See Table 4: Make variables on page 15. In addition to the operating
systems supported by the examples, the test suites also support the
operating system linux_ko, meaning test as a Linux kernel module. (ko
is the file extension used for kernel modules in 2.6.x Linux kernels).

OS_1

HTI_0
The name(1) or IP address of the host-target interface (ST Micro Connect)
for CPU 0. See also ENABLE_STMC2=1.

1. For ST40/Linux and ST40/OS21 the name of the interface is the host name of the device itself. For
ST200/OS21 the name of the interface is specified in the toolset’s configuration files.

HTI_1
The name(1) or IP address of the host-target interface (ST Micro Connect)
for CPU 1. See also ENABLE_STMC2=1.

ENABLE_STMC2=1

Enable support for the ST Micro Connect 2. In this mode the HTI_0 and
HTI_1 variables should specify the ST Micro Connect 2 TargetString, in
the form:

<stmc_name>:<target_pack>[:<core_name>]
[[parameter1=value1] [parameter2=value2] ...]

See the ST TargetPack user manual ADCS 8020851 for details.

Revision history Multicom

206/211 7574220

Revision history

Table 27. Document revision history

Version Date Comments

G April 08
Supports the R3.2 Multicom release.

Corrected the footnote to Table 13 on page 83 in Section 9.3.3: The mailbox factory
function.

F Mar 08

Supports the R3.2 Multicom release.
Removed references to older parts: ST20, OS20 and ST220 throughout.

Updated Table 2: Targeted platforms on page 10.

Updated Section 2.1: Setting up the distribution on page 13.
Updated Section 2.2.1: Building Linux kernel modules on page 14.

Added Section 2.3.2: Running examples on Linux on page 16.

Updated Section 3.2.1: Initializing MME on page 23.
Added footnote to Section 3.9.2: Linux on page 35.

Added Section 3.9.3: STLinux 2.3 and udev support on page 35.

Corrected Section 4.5: Aborting commands on page 44.

Section 9.3.3: The mailbox factory function:
– Inserted Table 12 on page 82.

– Updated Table 13 on page 83, participants, warpRangeAddr and
warpRangeSize and added warpRangeAddr2 and warpRangeSize2.

– Added Host 32-bit space enhanced mode support on page 84 and warpRangeAddr2
and warpRangeSize2 on page 85.

– Removed “The EMPI factory function” and the “Generic factory function”.

Added Section 9.4.1: The mailbox factory function on page 85.
Added EMBX_INCOHERENT_MEMORY to EMBX_Address on page 87 and EMBX_Offset on
page 128.
Chapter 10: Function descriptions, removed EMBXSHM_empi_mailbox_factory and
corrected Section 10.2, MME_Init description.
Appendix A: Transport configurations, added:

– A.1: EMBXSHM: STb7100-Mboard on page 192

– A.2: EMBXSHM: STb7109-Ref board on page 193
– A.3: EMBXSHM: STi7200-Mboard on page 194

– A.4: EMBXSHM: STi7111-Mboard on page 196

Corrected Section C.2: Debugging assertions and logging on page 203, Table 24,
MME_INFO.

Updated Section C.3: Running the test suites, Table 26 on page 205.

Multicom Revision history

7574220 207/211

E Jan 06

Section 2.2.1: Building Linux kernel modules on page 14 added.

Section 3.4.5: Cache management, Table 5: MME_ScatterPage_t FlagsIn and FlagsOut
on page 29 updated descriptions including footnotes.

Section 4.4.2: Deferred commands on page 41 and Pipelined transformers on page 42
changed MME_COMMAND_DEFERRED to MME_TRANSFORM_DEFFERED.

Section : warpRangeAddr and warpRangeSize on page 84 added.

Section 9.3.5: The generic factory function on page 86 added, including Event notification
to EMBXSHM_OPCODE_BUFFER_FLUSH.

EMBX_Mailbox_Register on page 118 updated.
EMBX_ModifyTuneable on page 127 added.

MME_ModifyTuneable on page 152 added.

C.3: Running the test suites on page 204 added example.
C.4: Tuneable parameters on page 205 added.

D Feb 05
Section 3.4.3: Subdividing a data buffer on page 27 - removed first paragraph.

Updated banners throughout to match maturity of document.

C Feb 05

Section 2.3: Examples on page 15 updated.

Section 3.4.3: Subdividing a data buffer on page 27 renamed.
Section 3.4.4: Data buffers in Linux user mode on page 28 added.

Section 9.3.3: The mailbox factory function on page 82 updated.

Section A.1.4: Booting the platform updated.
Section A.2.2: Booting the platform updated.

Appendix C: Advanced build options on page 203 all sections updated.

B Sept 04

Chapter 1: Introduction on page 9 reworked to include MME.

Chapter 2: Getting started on page 13 reworked to include MME.

Part 2 MME user guide on page 18 added.
Section 5.1.1: Structure of a typical system on page 53 added.

Section 9.4: EMBXSHMC on page 85 added.

Section 10.2: MME functions and macros on page 141 added.
Section 10.3: MME constants, enums and types on page 163 added.

Appendix B: MME supplement on page 198 added.

Table 21: Mailbox configuration for STi5528-Mboard updated.
Section A.3: EMBXSHM: STm8000-Demo board updated.

Table 22: Mailbox configuration for MB379/STm8000 updated.

Section A.4: EMBXSHM: ST220-EVAL added.
Appendix C: Advanced build options on page 203 removed redundant material.

Table 25: Directories contains the test suites on page 204 updated.

A Oct 03 First complete version, submitted to ADCS.

Table 27. Document revision history (continued)

Version Date Comments

Index Multicom

208/211 7574220

Index

A
Arena declarations .57
Arenas .55

B
Buffer

MME . 25-28

C
C compiler .54
Cache

MME .25, 28
Companion processor

MME .19

D
Data structure

MME .46
Debug

assertions .203
information .14

Declarations
Arena .57
Header .58
Import .58
Transport for RPC .57

Decorations 54-55, 59-60, 64
Deferred commands

MME .41

E
EMBX .9, 11
EMBX_Address .87
EMBX_Alloc .88
EMBX_ClosePort .89
EMBX_CloseTransport 90
EMBX_Connect .91
EMBX_ConnectBlock .92
EMBX_CreatePort .94
EMBX_Deinit .95
EMBX_DeregisterObject 96
EMBX_FindTransport .97
EMBX_Free .98
EMBX_GetBufferSize .99
EMBX_GetFirstTransport100

EMBX_GetNextTransport 101
EMBX_GetObject . 102
EMBX_GetTransportInfo 103
EMBX_Init . 104
EMBX_InvalidatePort 105
EMBX_Mailbox . 79-80
EMBX_Mailbox_Alloc 106-107, 109
EMBX_Mailbox_AllocLock 110
EMBX_Mailbox_Deregister 108
EMBX_Mailbox_GetLockFromHandle 111
EMBX_Mailbox_GetSharedHandle 112
EMBX_Mailbox_Init . 113
EMBX_Mailbox_InterruptClear 114
EMBX_Mailbox_InterruptDiable 115
EMBX_Mailbox_InterruptEnable 116
EMBX_Mailbox_InterruptRaise 117
EMBX_Mailbox_Register 118
EMBX_Mailbox_ReleaseLock 120
EMBX_Mailbox_StatusGet 121
EMBX_Mailbox_StatusMask 122
EMBX_Mailbox_StatusSet 123
EMBX_Mailbox_Synchronize 124
EMBX_Mailbox_TakeLock 125
EMBX_Mailbox_UpdateInterruptHandler . . . 126
EMBX_ModifyTuneable 127, 205
EMBX_Offset . 128
EMBX_OpenTransport 129
EMBX_Receive . 130
EMBX_RECEIVE_EVENT 130
EMBX_RECEIVE_TYPE 130
EMBX_ReceiveBlock 132
EMBX_RegisterObject 134
EMBX_RegisterTransport 135
EMBX_SendMessage 136
EMBX_SendObject . 137
EMBX_TransportFactory_fn 135
EMBX_UnregisterTransport 138
EMBX_UpdateObject 139
EMBXSHM . 80-85
EMBXSHM_mailbox_factory 82, 140
EMBXSHMC . 85
Endianness

MME . 46
Environment variable . 13
Example

directories . 15
MME . 49

Multicom Index

7574220 209/211

F
FlagsIn .29
FlagsOut .29
FOURCC format .38
Frame-based transformer 33, 40
Front-end to the stripper54

G
Generator . 54-55

Decorations .55

H
Header declarations .58
Host processor

MME .19

I
IDL .57
Import .58
Import declarations .58
Installation .13
Interface Definition Language 52

L
Linux . 10, 14, 16, 22, 35

STLinux .35

M
MME . 9-10, 19-50

See also Transformer
Buffer and cache .25
command state .30
commands 20, 29-33, 39-45

deferred .41
context data .37
data representation .46
due time .20
initialization .22
insufficient memory .43
namespace .48
parameter passing .45
underflow .43

MME_AbortCommand 31, 34, 141
MME_AbortCommand_t 44-45, 163
MME_AllocationFlags_t164
MME_AllocDataBuffer 26, 142
MME_Command_t 30, 44, 165
MME_CommandCode_t167

MME_CommandEndType_t 168
MME_CommandId_t 169
MME_CommandState_t 170
MME_CommandStatus_t 30, 40, 171
MME_DataBuffer_t 25, 172
MME_DataFormat_t 173
MME_DeregisterTransformer 143
MME_DeregisterTransport 144
MME_ERROR . 174
MME_Event_t . 176
MME_FreeDataBuffer 26, 145
MME_GenericCallback_t 177
MME_GenericParams_t 29, 45, 178
MME_GetTransformerCapability 25, 146
MME_GetTransformerCapability_t . . 38, 45, 179
MME_INDEXED_PARAM 147
MME_Init . 23, 148
MME_InitTransformer 24-25, 149
MME_InitTransformer_t 36-37, 180
MME_LENGTH . 150
MME_LENGTH_BYTES 151
MME_MAX_TRANSFORMER_NAME 181
MME_ModifyTuneable 152, 205
MME_NotifyHost 41, 44, 154
MME_PARAM . 155
MME_PARAM_SUBLIST 156
MME_Priority_t . 182
MME_ProcessCommand_t 39-40, 45, 183
MME_RegisterTransformer 23, 36, 157
MME_RegisterTransport 23, 158
MME_Run . 159
MME_ScatterPage_t 29, 184
MME_SEND_BUFFER 34
MME_SEND_BUFFERS . . 20, 32-33, 40, 43, 45
MME_SendCommand29, 32, 39, 160
MME_SET_GLOBAL_TRANSFORM_PARAMS .
20, . 32, 41, 45
MME_Term . 161
MME_TermTransformer 24, 162
MME_TermTransformer_t 38, 185
MME_Time_t . 186
MME_TRANSFORM 20, 32-34, 40, 45
MME_TransformerCapability_t 187
MME_TransformerHandle_t 188
MME_TransformerInitParams_t 189
MME_UNIT . 190
MPGV_DecodeParams_t 201
MPGV_GlobalParams_t 200
MPGV_PictureType_t 199
Multicom . 9

Index Multicom

210/211 7574220

N
Namespace

MME .48

O
OS21 .34

R
RPC . 9, 11, 52

Decorations .54
generator tool .52
stripping tool .54
System structure .52
tools .54

RPC_ROOT
environment variable13

S
STLinux .35
Stream-based transformer33
Stripper .54
strpcgen .55
Structure of the RPC system 52
System structure .52

T
Toolsets .10
Transformer

See also MME
callback .20
commands. See MME

commands
create .24, 36
destroy .24
event .20
frame-based .33, 40
instance .19
instantiation .37
pipelined .42
priorities .21
query .25, 38
registering .23, 36
stream-based .33
termination .38
type .33

Transport
declaration for RPC .57
for MME .22

for RPC . 57
registering for MME 23

Tuning parameters . 205

Multicom

7574220 211/211

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Preface
	Conventions used in this guide
	General notation

	Documentation identification and control
	Acknowledgements

	1 Introduction
	1.1 Overview
	1.2 Targeted platforms
	Table 1. Supported operating systems
	Table 2. Targeted platforms

	1.3 The MME/EMBX stack
	1.4 The RPC/EMBX stack
	1.5 Using EMBX without RPC or MME

	Part 1 Getting started
	2 Getting started
	2.1 Setting up the distribution
	Table 3. The distribution directories

	2.2 Building Multicom
	2.2.1 Building Linux kernel modules

	2.3 Examples
	Table 4. Make variables
	2.3.1 MME example
	2.3.2 Running examples on Linux
	2.3.3 RPC example

	Part 2 MME user guide
	3 Using the MME API
	3.1 Overview
	Figure 1. Typical MME software stack
	3.1.1 Transformers and transformer instances
	3.1.2 Commands and events
	3.1.3 Callbacks
	3.1.4 Due time
	Figure 2. Time arithmetic

	3.1.5 Transformer priorities
	3.1.6 Structure size

	3.2 Initialization
	3.2.1 Initializing MME
	3.2.2 Registering EMBX transports
	3.2.3 Registering transformers
	3.2.4 Example

	3.3 Managing transformer lifetimes
	3.3.1 Querying the capabilities of a transformer

	3.4 Buffer and cache management
	Figure 3. A scattered data buffer
	3.4.1 Allocating data buffers
	3.4.2 Manually managing data buffers
	3.4.3 Subdividing a data buffer
	3.4.4 Data buffers in Linux user mode
	3.4.5 Cache management
	Table 5. MME_ScatterPage_t FlagsIn and FlagsOut

	3.5 Application and transformer specific data
	3.6 Issuing commands
	Figure 4. Command state diagram
	3.6.1 Aborting commands

	3.7 Types of commands
	3.7.1 Transforming data
	3.7.2 Providing supplementary buffers
	3.7.3 Altering global parameters

	3.8 Common types of transformer
	3.8.1 Frame-based operation
	3.8.2 Stream-based and hybrid operation

	3.9 Linking and loading
	3.9.1 OS21
	3.9.2 Linux
	3.9.3 STLinux 2.3 and udev support

	4 Writing an MME transformer
	4.1 Overview
	Table 6. Transformer function pointers

	4.2 Managing transformer lifetimes
	4.2.1 Instantiation
	4.2.2 Context data
	4.2.3 Termination

	4.3 Querying the capabilities of a transformer
	4.4 Processing a command
	4.4.1 Communicating with the application
	4.4.2 Deferred commands
	4.4.3 Streaming and hybrid transformers

	4.5 Aborting commands
	4.6 Scheduling and re-entrancy
	4.7 Parameter passing
	4.7.1 Data representation
	Table 7. Data representation - endianness

	4.7.2 Mapping application data structures into MME parameters
	4.7.3 Namespace management
	Table 8. Recommended postfixes for parameter array names

	4.7.4 An example

	Part 3 RPC user guide
	5 Building RPC systems
	5.1 Overview
	Figure 5. The structure of the RPC system
	5.1.1 Structure of a typical system

	5.2 Supplied tools
	5.3 Stripping with rpccc
	5.4 Stripping with the C pre-processor
	5.5 Avoiding stripping
	5.6 Generating RPC stubs
	5.7 Linking, loading and configuring

	6 Interface declarations
	6.1 Terminology
	6.2 Arena declarations
	6.3 Transport declarations
	6.4 Import declarations
	6.5 Header declarations

	7 Decorating types and functions
	7.1 Default behavior
	Table 9. Default copying behavior for specific data types.

	7.2 Direction information
	Table 10. RPC direction specifiers

	7.3 Strings
	7.4 Known length arrays
	7.5 Delimiter terminated arrays
	7.6 Opaque pointers
	7.7 Pointers to shared memory
	7.8 Type definitions
	7.9 Function pointers and callbacks
	7.10 Adding decorations post-hoc

	Part 4 EMBX user guide
	8 Using the EMBX API
	8.1 Overview
	8.1.1 The EMBX shell

	8.2 Initialization
	8.2.1 Registering transport factories
	8.2.2 Initializing EMBX

	8.3 Transports
	8.3.1 Querying transports
	Table 11. Transport information structure elements

	8.3.2 Transport open and close

	8.4 Buffer management
	8.4.1 Buffer allocation and release
	8.4.2 Querying buffer size

	8.5 Distributed objects
	8.5.1 Distributed object registration
	8.5.2 Querying distributed object properties

	8.6 Ports
	8.6.1 Obtaining port handles
	8.6.2 Closing ports

	8.7 Send and receive
	8.7.1 Receiving message and object events
	8.7.2 Sending messages
	8.7.3 Sending and updating distributed objects
	8.7.4 Usage example: buffer pool
	Figure 6. Reusing buffers from a pre-allocated pool

	8.8 Transport and EMBX shutdown

	9 Transport specifics
	9.1 Introduction
	9.2 EMBXMailbox
	9.2.1 EMBXMailbox as a Linux kernel module

	9.3 EMBXSHM
	9.3.1 Address modes and pointer warping
	Figure 7. Example memory maps

	9.3.2 Linking and loading
	9.3.3 The mailbox factory function
	Table 12. Pointer types required for EMBXSHM configuration
	Table 13. EMBXSHM_MailboxConfig_t structure

	9.4 EMBXSHMC
	9.4.1 The mailbox factory function
	Table 14. Pointer types required for EMBXSHMC configuration

	Part 5 Functions, types and macros
	10 Function descriptions
	10.1 EMBX functions
	EMBX_Address
	EMBX_Alloc
	EMBX_ClosePort
	EMBX_CloseTransport
	EMBX_Connect
	EMBX_ConnectBlock
	EMBX_CreatePort
	EMBX_Deinit
	EMBX_DeregisterObject
	EMBX_FindTransport
	EMBX_Free
	EMBX_GetBufferSize
	EMBX_GetFirstTransport
	EMBX_GetNextTransport
	EMBX_GetObject
	EMBX_GetTransportInfo
	EMBX_Init
	EMBX_InvalidatePort
	EMBX_Mailbox_Alloc
	EMBX_Mailbox_AllocLock
	EMBX_Mailbox_Deregister
	EMBX_Mailbox_Free
	EMBX_Mailbox_FreeLock
	EMBX_Mailbox_GetLockFromHandle
	EMBX_Mailbox_GetSharedHandle
	EMBX_Mailbox_Init
	EMBX_Mailbox_InterruptClear
	EMBX_Mailbox_InterruptDisable
	EMBX_Mailbox_InterruptEnable
	EMBX_Mailbox_InterruptRaise
	EMBX_Mailbox_Register
	Table 15. EMBX_Mailbox_Flags_t flags
	EMBX_Mailbox_ReleaseLock
	EMBX_Mailbox_StatusGet
	EMBX_Mailbox_StatusMask
	EMBX_Mailbox_StatusSet
	EMBX_Mailbox_Synchronize
	EMBX_Mailbox_TakeLock
	EMBX_Mailbox_UpdateInterruptHandler
	EMBX_ModifyTuneable
	Table 16. Tuneable values for EMBX parameters
	EMBX_Offset
	EMBX_OpenTransport
	EMBX_Receive
	EMBX_ReceiveBlock
	EMBX_RegisterObject
	EMBX_RegisterTransport
	EMBX_SendMessage
	EMBX_SendObject
	EMBX_UnregisterTransport
	EMBX_UpdateObject
	EMBXSHM_mailbox_factory

	10.2 MME functions and macros
	MME_AbortCommand
	MME_AllocDataBuffer
	MME_DeregisterTransformer
	MME_DeregisterTransport
	MME_FreeDataBuffer
	MME_GetTransformerCapability
	MME_INDEXED_PARAM
	MME_Init
	MME_InitTransformer
	MME_LENGTH
	MME_LENGTH_BYTES
	MME_ModifyTuneable
	Table 17. Tuneable values for MME parameters
	MME_NotifyHost
	MME_PARAM
	MME_PARAM_SUBLIST
	MME_RegisterTransformer
	MME_RegisterTransport
	MME_Run
	MME_SendCommand
	MME_Term
	MME_TermTransformer

	10.3 MME constants, enums and types
	MME_AbortCommand_t
	MME_AllocationFlags_t
	MME_Command_t
	MME_CommandCode_t
	MME_CommandEndType_t
	MME_CommandId_t
	MME_CommandState_t
	MME_CommandStatus_t
	MME_DataBuffer_t
	MME_DataFormat_t
	MME_ERROR
	MME_Event_t
	MME_GenericCallback_t
	MME_GenericParams_t
	MME_GetTransformerCapability_t
	MME_InitTransformer_t
	MME_MAX_TRANSFORMER_NAME
	MME_Priority_t
	MME_ProcessCommand_t
	MME_ScatterPage_t
	MME_TermTransformer_t
	MME_Time_t
	MME_TransformerCapability_t
	MME_TransformerHandle_t
	MME_TransformerInitParams_t
	MME_UINT

	Appendices
	Appendix A Transport configurations
	A.1 EMBXSHM: STb7100-Mboard
	A.1.1 Mailbox configuration
	Table 18. Mailbox configuration for MB411/STB7100

	A.1.2 ST40 transport configuration
	A.1.3 ST231-video transport configuration
	A.1.4 ST231-audio transport configuration
	A.1.5 Booting the platform

	A.2 EMBXSHM: STb7109-Ref board
	A.3 EMBXSHM: STi7200-Mboard
	A.3.1 Mailbox configuration
	Table 19. Mailbox configuration for (MB519 + MB520)/STi7200 video/audio 0
	Table 20. Mailbox configuration for (MB519 + MB520)/STi7200 video/audio 1

	A.3.2 ST40 transport configuration
	A.3.3 ST231- Audio 0 transport configuration

	A.4 EMBXSHM: STi7111-Mboard
	A.4.1 Mailbox configuration
	Table 21. Mailbox configuration for MB618/STi7111

	A.4.2 ST40 transport configuration
	A.4.3 ST231-video transport configuration
	A.4.4 ST231-audio transport configuration

	Appendix B MME supplement
	B.1 Parameter encoding
	B.1.1 Samples definitions
	Table 22. MPEG video decoders specific definitions

	Appendix C Advanced build options
	C.1 Manual toolset selection
	Table 23. Make variables used for manual toolset selection

	C.2 Debugging assertions and logging
	Table 24. Pre-processor macros that enable diagnostic code

	C.3 Running the test suites
	Table 25. Directories contains the test suites
	Table 26. Environment variables for test suites

	C.4 Tuneable parameters

	Revision history
	Table 27. Document revision history

	Index

